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Event-Based Control

L. Grüne, S. Hirche, O. Junge, P. Koltai, D. Lehmann, J. Lunze, A. Molin,
R. Sailer, M. Sigurani, C. Stöcker, and F. Wirth

In event-based control, the feedback loop is closed only if an event
indicates that the control error exceeds a tolerable bound and trig-
gers a data transmission from the sensors to the controllers and the
actuators. Hence, event-based control is an important method for
reducing the communication load of a digital network. This chapter
explains the main ideas of event-based control and proposes new loop
structures and design methods.

Chapter Contents

5.1 Introduction to Event-Based Control . . . . . . . . . . . . . . . . 171

5.2 Disturbance Attenuation by Event-Based State
Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.2.1 Control Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.2.2 Continuous State Feedback . . . . . . . . . . . . . . . . . . . . . . . 176
5.2.3 Event-Based State Feedback . . . . . . . . . . . . . . . . . . . . . . 178
5.2.4 Main Properties of the Event-Based State-Feedback

Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.2.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.3 Event-Based Stabilization of Interconnected Systems . 191

5.3.1 Control of Interconnected Systems . . . . . . . . . . . . . . . . . 191
5.3.2 Distributed Realization of the Event-Based State

Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.3.3 Decentralized Event-Based State Feedback . . . . . . . . . . 195

5.4 Optimization-Based Control . . . . . . . . . . . . . . . . . . . . . . . . 203

5.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.4.2 Optimality Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.4.3 Discretization of the State Space . . . . . . . . . . . . . . . . . . 205
5.4.4 Dynamic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

jan.lunze@ruhr-uni-bochum.de



170 L. Grüne et al.
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5.1 Introduction to Event-Based Control

Event-based control is a control methodology that is currently being de-
veloped as a means to reduce the communication between the sensors, the
controller and the actuators in a control loop. The sampling instants are
not determined periodically by a clock, but by an event generator, which
adapts the information flow in the feedback loop to the current behavior of
the closed-loop system. A communication among the components is invoked
only after an event has indicated that the control error exceeds a tolerable
bound.

Fig. 5.1 Event-based control loop

This working principle differs fundamentally from that of sampled-data
feedback loops, in which the sensor data are communicated to the controller
at equidistant sampling times. In periodic sampling, a communication takes
place independently of the size of the control error and, in particular, also in
case of small control errors when an information feedback is not necessary to
satisfy the performance requirements on the closed-loop system. In these sit-
uations, the communication and computing resources are used unnecessarily.

Figure 5.1 shows the main components of an event-based control loop.
The plant has the continuous-time or discrete-time input u(t) and the state
x(t) (or output y(t)), which are continuously generated by the control input
generator or continuously evaluated by the event generator, respectively. The
communication links drawn by dashed arrows are only used after the event
generator has indicated that the control error exceeds a tolerable bound at
some time tk, where an event name ek, the current state x(tk) or the current
output y(tk) is transmitted to the controller. The controller determines the
new input uk, which is used by the control input generator to determine
the continuous input u(t) in the time interval [tk, tk+1) until the next event
occurs at time tk+1.
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Theoretical Challenges. In event-based control, the fundamental assump-
tion of sampled-data control theory claiming a periodic triggering scheme
invoked by a clock is violated. Hence, for event-based control the well-known
discrete-time models of the plant, the controller and the closed-loop system
cannot be applied but a new theory has to be developed, which takes into
account the asynchronous component behavior. The main novel analysis and
design aims of this new theory refer to the choice of the event generator and
of the control input generator.

The event generator determines

• the time instants tk, (k = 0, 1, ...) at which the next communication bet-
ween the event generator, the controller and the control input generator
is invoked, and

• the information that is communicated from the sensor towards the
controller.

The control input generator determines the signal u(t) continuously for
the time interval t ∈ [tk, tk+1) in dependence upon the information obtained
at time tk.

The main questions to be answered ask

• at which time tk a feedback loop has to be closed by using the communi-
cation links,

• which information ek should be communicated and
• how the control input generator should determine the control input u(t)

between succeeding event times.

Several different methods for event-based control have been proposed in the
recent years, which distinguish with respect to the answers given to these
questions. Some of them have been published under different names like event-
driven control, event-triggered control, Lebesgue sampling, deadband control
or send-on-delta control . Surveys and introductions to these techniques can
be found in [241, 354].

A similar, but conceptually different methodology is self-triggered control.
Here the plant state is not continuously supervised by the event generator,
but the next event time tk+1 is determined by the event generator at the
event time tk [6, 379]. Then the sensors can ”sleep” until the predicted next
sampling instant.

Application Scenarios. There are several reasons for using event-based
feedback. First, the information exchange in the feedback loop should be
reduced to the minimum communication that is necessary to ensure a re-
quired system performance. If the information is transferred to and from the
controller by a digital communication network, a reduced information flow
decreases the risk of a network overload. For wireless nodes, reduced activity
saves energy.
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The second motivation occurs for systems, where the physical structure re-
quires that measurements or control actions have to be taken at time instants
prescribed by the dynamics of the plant. For example, position measuring de-
vices of rotating components work with markings on the axis, which provide
position information not at specific clock times but in certain positions.

Third, asynchronous communication protocols and real-time software do
not allow to transfer and process information at specific clock times but lead
to an inherently asynchronous behavior of all components of a feedback loop.
Sensors and actuators likewise are triggered by events, because they work if
some new information arrives. For such components the event-based working
scheme is more ”natural” than periodic sampling.

Fundamental Properties of Event-Based Control. The event-driven
function principle implies that the plant input u(t) is determined by a com-
bination of feedforward control and feedback control. At event times tk, the
input u(tk) depends in a closed-loop fashion upon the current state x(tk)
(provided that the communication links do not introduce a substantial time
delay), whereas between two consecutive event times tk and tk+1 the input
u(t) is generated as open-loop control in dependence upon ”old data” uk.

Due to the aim of event-based control to sample only if a severe perfor-
mance degradation has to be avoided, most event-based control schemes can-
not ensure asymptotic stability of the closed-loop system. Instead, the plant
state x(t) should be held in the surroundings Ω of the equilibrium state x̄.
The property x(t) ∈ Ω for all t ≥ t̄ is called ultimate boundedness or practical
stability of the closed-loop system (cf. Def. 5.1). Usually the size of the set Ω
depends upon the event threshold ē.

Comparison of Event-Based and Sampled-Data Control. Analytical
results showing the difference of event-based control and sampled-data control
can only be obtained for first-order systems [11, 13, 226, 303]. They show
that event-based sampling can lead indeed to a considerable reduction of the
communication within the control loop. Furthermore, if the system is heavily
disturbed, the event-based control loop may have a better performance than
the sampled-data loop, because in this situation it invokes the communication
more often than the clock.

Chapter Overview. This chapter surveys methods that are applicable for
high-order systems and different event-triggering and control input generation
methods. Five different methods will be described in the sequel:

• Event-based state feedback (Section 5.2): The control input generator
is constructed such that the closed-loop system mimics the behavior of
a continuous state-feedback loop with adjustable precision. It is shown
that the control input generator has to include a model of the continuous
state-feedback loop.
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• Distributed event-based control (Section 5.3): For interconnected sys-
tems, the idea of event-based state feedback can either be implemented
as a distributed controller, which leads to the same overall system per-
formance as the centralized feedback, or can be applied separately to
the isolated subsystens resulting in a decentralized event-based control
scheme.

• Optimization-based control (Section 5.4): The event-based controller
can be obtained as the solution of an optimal control problem, if the state
space is partitioned and the best possible constant input is applied as long
as the state remains in the same state-space partition.

• Event-based stabilization of large-scale systems (Section 5.5): The
stability of an interconnected system is tested by a small-gain theorem,
which also evaluates the robustness of the event-based control loop against
uncertainties in the communication channel.

• Event-based control of interconnected nonlinear systems (Sec-
tion 5.6): This section extends the idea of event-based control to nonlinear
interconnected systems and proves that robustly stable controllers of the
subsystems lead to an input-to-state stable overall system.

• Event-based control of stochastic systems (Section 5.7): If formu-
lated as a stochastic optimization problem, the event generator and the
control input generator have to be designed simultaneously leading to a
very complex optimization problem. If, however, both components lie in a
nested information structure, where the event generator knows the plant
state x(t) for all time t and the control input generator knows only the
state x(tk) at an event time tk, the overall problem can be decomposed
into two nested optimization problems that can be solved sequentially.

There is an interesting similarity concerning the structure of the event-based
controllers that are developed in Sections 5.2 and 5.7 by starting from quite
different viewpoints. Section 5.7 looks for optimal event-triggering and input-
generating policies and ends up with an event generator and an control input
generator that include a model of the closed-loop system. This structure is
quite similar to the control loop elaborated in Section 5.2, which is obtained
by investigating the control law of a state-feedback controller and implement-
ing it in an event-based fashion. Likewise, the event generator and the control
input generator have to include a model of the continuous control loop.

The methods developed in Sections 5.3 and 5.6 have been experimentally
evaluated at a common thermofluid process, which is described in Section 5.8.
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5.2 Disturbance Attenuation by Event-Based State
Feedback

5.2.1 Control Aim

This section focusses on the influence of unknown disturbances on event-
based control. It introduces a state-feedback approach to event-based control
with the design aim to mimic the disturbance behavior of a given continuous
closed-loop system, which is assumed to have the ”best possible” disturbance
attenuation properties.

In the sequel, the event-based control loop shown in Fig. 5.1 is simplified
as depicted in Fig. 5.2. Here, the controller is incorporated in the control
input generator.

Control input
generator

u( )t
Plant

Event
generator

x( )t
d( )t

x( )tk

y( )t

Fig. 5.2 Simplified event-based control loop

The plant is represented by the linear state-space model

ẋ(t) = Ax(t) +Bu(t) +Ed(t), x(0) = x0 (5.1)

y(t) = Cx(t), (5.2)

where x ∈ IRn denotes the state of the system with the initial value x0,
u ∈ IRm and y ∈ IRr are the inputs or measured outputs, respectively, and
d ∈ IRl represents exogenous disturbances.

The pair (A, B) is assumed to be controllable and the disturbance d(t)
to be bounded:

‖d(t)‖ ≤ dmax. (5.3)

The notations ‖x‖ and ‖A‖ denote an arbitrary vector norm or the induced
matrix norm, and the absolute value is denoted by |x|. The expression ‖x(t)‖
denotes an arbitrary vector norm at time t. It is further assumed that

• the plant dynamics are accurately known,
• the state x(t) is measurable, and
• the information exchange between the event generator and the control

input generator is instantaneous and imposes no restrictions on the infor-
mation to be sent at event times.
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Hence, the reason to communicate information via the dashed arrows in
Fig. 5.2 is primarily given by the situation that the disturbance d(t) has
caused an intolerable behavior of the control output y(t) or the plant state
x(t).

Main Idea. As a main characteristic of the scheme proposed, the event
generator uses a model of the continuous control loop to compare the current
plant state x(t) with the desired state that occurs in the continuous closed-
loop system. If the difference between both states exceeds an upper bound ē,
an event is triggered and the current state x(tk) is transmitted to the control
input generator. As a further important fact, the control input generator
incorporates the model of the continuous control loop to determine the future
control input u(t), (t ≥ tk). It will be shown that the event-based control
loop with these characteristics has the following properties:

• The state x(t) of the event-based state-feedback loop is ultimately bounded
in the sense that it remains, for all times t, in a bounded neighborhood
Ωe of the desired state xCT(t) of the continuous state-feedback loop.

• The communication over the feedback channel in the event-based control
loop is bounded and depends explicitly on the disturbance d(t).

• Both the accuracy in terms of approximating the behavior of the continu-
ous state-feedback loop and the minimum time interval between two con-
secutive events (minimum inter-event time) can be adjusted by changing
the threshold ē of the event generator in order to adapt the event-based
state-feedback loop to the requested needs.

5.2.2 Continuous State Feedback

This section summarizes the main properties of the continuous state-feedback
loop which is later used as the reference system to evaluate the behavior of
the event-based state-feedback loop. Plant (5.1), (5.2) together with the state
feedback

u(t) = −Kx(t) (5.4)

yields the continuous closed-loop system

ẋCT(t) = (A−BK)︸ ︷︷ ︸
Ā

xCT(t) +Ed(t), xCT(0) = x0 (5.5)

yCT(t) = CxCT(t). (5.6)

The index ”CT” is used to distinguish the signals of this model from the
corresponding signals of the event-based control loop considered later.
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The state-feedback matrix K is assumed to be designed so that the matrix
Ā is Hurwitz and the closed-loop system has desired disturbance attenuation
properties.

As Ā is Hurwitz and the disturbance d(t) is assumed to be bounded accord-
ing to Eq. (5.3), the state xCT(t) of the continuous state-feedback loop (5.5),
(5.6) is GUUB according to the following definition:

Definition 5.1. [205] The solution x(t) of the continuous control
loop (5.5), (5.6) is said to be globally uniformly ultimately bounded
(GUUB) if for every x0 ∈ IRn there exists a positive constant p and
a time t̄ such that holds:

x(t) ∈ Ωt = {x : ‖x‖ ≤ p}, ∀t ≥ t̄.

Then one says that the continuous control loop (5.5), (5.6) is ultimately
bounded.

For the linear continuous control loop (5.5), (5.6) the state x(t) is GUUB
if the matrix Ā is Hurwitz and the disturbance d(t) is bounded.

Behavior of the Continuous State-Feedback Loop. The control input
generated by the state-feedback controller (5.4) is given by

u(t) = −KeĀtx0 −
∫ t

0

KeĀ(t− τ)Ed(τ) dτ.

This equation shows that the input u(t) does not only depend upon the
initial state x0 but also on the disturbance input d(t). In the setting of
event-based control, this aspect is important. If at time tk the state x(tk) is
communicated to the control input generator, the control input generator is
able to determine the same control input u(tk) = −Kx(tk) as a continuous
state-feedback controller. However, for all future times t > tk, the control
input generator has to know the disturbance d(t) for t > tk:

u(t) = −KeĀ(t− tk)xCT(tk)−
∫ t

tk

KeĀ(t− τ)Ed(τ) dτ, t ≥ tk.(5.7)

This analysis shows two important facts:

• Continuous state-feedback control (5.4) gets the information about the
current disturbance implicitly by the continuous communication of the
current state xCT(t).

• Any feedback without continuous communication has to make assump-
tions about the disturbance to be attenuated. Unless the disturbance is
measurable, any discontinuous feedback cannot have the same perfor-
mance as the feedback loop with continuous communication.
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The main idea of the event-based state-feedback approach discussed in the
following is to replace the continuous state feedback (5.4) by an event-based
controller so that the state x(t) of the event-based state-feedback loop re-
mains, for all times t, in the neighborhood Ωe(xCT(t)) of the desired state
xCT(t) of the continuous state-feedback loop (5.5), (5.6).

5.2.3 Event-Based State Feedback

Control Input Generator. A direct consequence of the analysis in the pre-
ceding section is the fact that for the time t ≥ tk the plant (5.1), (5.2) with
the control input (5.7) behaves exactly like the continuous control loop (5.5),
(5.6). If the control input generator uses Eq. (5.7) to determine the control
input for t ≥ tk, then the best possible performance is obtained. To enable
the control input generator to use this equation the state x(tk) has to be mea-
sured and communicated to the control input generator, and an assumption
concerning the disturbance has to be made.

In the following, the control input generator assumes that the disturbance
is constant

d(t) = d̂k for t ≥ tk
with known magnitude d̂k. Hence, it uses the equation

u(t) = −KeĀ(t− tk)x(tk)−KĀ−1
(
eĀ(t− tk) − In

)
Ed̂k, t ≥ tk (5.8)

which directly follows from Eq. (5.7) for constant disturbances, until it gets
the next information x(tk+1). In denotes the identity matrix of size n.

The control input generator determines the input (5.8) by means of a
model of the continuous closed-loop system (5.5)

ẋs(t) = Āxs(t) +Ed̂k, xs(t
+
k ) = x(tk), t ≥ tk (5.9)

u(t) = −Kxs(t). (5.10)

Here, xs is used to denote the state of the control input generator. Note that
the signal u(t) obtained by Eq. (5.8) is the same as the solution of (5.9),
(5.10).

The time t+k indicates the update of the model state xs with the measured
state x(tk), which the control input generator gets from the event generator
at event time tk. Figure 5.3 shows the block diagram of the control input gen-
erator. Suitable ways for determining the event time tk and the disturbance
estimate are presented later in this section.
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Model

u K( )=-t xs( )t

u( )t

dk

xs( )t

u( )t
x( )tk

Fig. 5.3 Control input generator

Behavior of the Event-Based State-Feedback Loop. The analysis in
this paragraph is valid for arbitrary event generators and arbitrary meth-
ods to estimate the disturbance magnitude d̂k. It investigates the behavior
of the event-based control loop in the time interval [tk, tk+1) between the
consecutive event times tk and tk+1.

The plant (5.1), (5.2) together with the control input generator (5.9), (5.10)
is described for the time period [tk, tk+1) by the state-space model

(
ẋ(t)

ẋs(t)

)
=

(
A −BK

O Ā

)(
x(t)

xs(t)

)
+

(
E

O

)
d(t) +

(
O

E

)
d̂k

(
x(t+k )

xs(t
+
k )

)
=

(
x(tk)

x(tk)

)

y(t) = (C O)

(
x(t)

xs(t)

)
.

This model takes into account that the closed-loop system is subject to the
disturbance d(t), whereas the control input generator uses the constant dis-

turbance estimate d̂k. The expression xi(t
+
k ) = xi(tk) is used in the following

to explicitly indicate that the respective state is not changed at the corre-
sponding time instance.

By introducing the state transformation
(
xΔ(t)

xs(t)

)
=

(
In −In
O In

)(
x(t)

xs(t)

)
(5.11)

the following result can be obtained

Lemma 5.1. [248] The output of the event-based state-feedback loop

(5.1), (5.2), (5.9), (5.10) subject to the disturbance d(t) = d̂k +dΔ(t)
consists of two components y(t) = ys(t) + yΔ(t) given by

ys(t) = CeĀ(t− tk)x(tk) +CĀ−1
(
eĀ(t− tk)−In

)
Ed̂k(5.12)

yΔ(t) =

∫ t

tk

CeA(t− τ)EdΔ(τ)dτ. (5.13)
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Fig. 5.4 Interpretation of Eqs. (5.12), (5.13)

The interpretation of this lemma is illustrated in Fig. 5.4. It shows three
facts:

• The constant disturbance d̂k used by the control input generator, has
the same effect on the event-based control as on the continuous state
feedback. In the time interval [tk, tk+1) with the initial state x(tk) both
systems generate the output ys(t).

• The difference dΔ(t) = d(t) − d̂k between the actual disturbance d(t)

and the constant disturbance estimate d̂k affects the (uncontrolled) plant
and results in the output yΔ(t), which describes the difference between
the outputs of the continuous state-feedback loop and the event-based
state-feedback loop.

• For a good approximation d̂k of the disturbance d(t) in the time in-

terval [tk, tk+1), i.e., d(t) − d̂k ≈ 0, the plant subject to the open-loop
control (5.8) behaves like the continuous state-feedback loop. No commu-
nication is necessary in this time interval.

According to the state transformation (5.11), the state x(t) = xs(t)+xΔ(t) of
the event-based state-feedback loop can be decomposed into two components:

xs(t) = eĀ(t− tk)x(tk) + Ā−1
(
eĀ(t− tk) − In

)
Ed̂k (5.14)

xΔ(t) =

∫ t

tk

eA(t− τ)EdΔ(τ)dτ. (5.15)

Like the output ys(t), the model state xs(t) is identical to the state trajec-
tory of the continuous state-feedback system (5.5), (5.6) in the time interval
[tk, tk+1) with initial state xs(tk) = x(tk) and affected by the constant dis-

turbance d(t) = d̂k.

Event Generator. Events are generated by comparing the measured state
trajectory x(t) with the state trajectory xs(t) that would occur in the con-

tinuous state-feedback loop for the constant disturbance d(t) = d̂k. As the
state xs(t) determined according to Eq. (5.9) represents the desired reference
signal, the measured state x(t) should be kept in the surroundings

Ωs(xs(t)) = {x : ‖x− xs(t)‖ ≤ ē}

of this state with adjustable size ē.
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The event generator triggers an event whenever the difference between
the measured plant state x(t) and the reference state xs(t) reaches the
event threshold ē:

‖x(t)− xs(t)‖ = ē. (5.16)

At this time instance t, which denotes the event time tk, the state infor-
mation x(tk) is communicated to the control input generator.

In order to avoid a continuous transmission of the state xs(t) from the
control input generator to the event generator, a copy of the control input
generator is included in the event generator so that the event generator can
determine the state xs(t) by means of Eq. (5.9).

As, at event time tk, the state xs(tk) is immediately updated with the
measured state x(tk), the following property holds.

Lemma 5.2. [248] Event condition (5.16) ensures that the difference
state xΔ(t) = x(t)− xs(t) is bounded and remains in the set ΩΔ:

xΔ(t) ∈ ΩΔ = {xΔ : ‖xΔ‖ ≤ ē}, ∀t ≥ 0.

Disturbance Estimator. The following investigations show how to get an
estimate d̂k of the disturbance magnitude at the event time tk. Assume that
in the preceding time interval [tk−1, tk) the disturbance estimate d̂k−1 has
been used. Consider now the difference xΔ(t) = x(t)−xs(t) and assume that
the disturbance d(t) has been constant in this time interval

d(t) = d̄ for t ∈ [tk−1, tk),

where d̄ is the actual disturbance magnitude, which usually differs from the
estimate d̂k. Equation (5.15) yields

x(t)− xs(t) = A−1
(
eA(t− tk−1) − In

)
E(d̄− d̂k−1)

which is used to determine, at time t = tk, the unknown disturbance magni-
tude d̄:

The disturbance estimator determines the estimate d̂k recursively:

d̂0 = 0 (5.17)

d̂k = d̂k−1 +
(
A−1

(
eA(tk − tk−1) − In

)
E
)+

(x(tk)− xs(tk)) . (5.18)

jan.lunze@ruhr-uni-bochum.de



182 L. Grüne et al.

The pseudoinverse (!)+ in Eq. (5.18) exists if, as usual, the number of distur-
bances is lower than the number of state variables (n ≥ l) and the occurring
matrices have full rank. Note that this disturbance estimation explicitly re-
quires the existence of the inverse system matrix A−1 but it does not require
the stability of the plant.

The disturbance estimator is included in the control input generator as
well as in the event generator to provide both components with a current
disturbance estimate at event times tk, (k = 0, 1, 2, ...). It has the following
property.

Lemma 5.3. [248] If at time t1 the first event has been generated in
the event-based state-feedback loop affected by a constant disturbance
d(t) = d̄, the disturbance estimator (5.17), (5.18) correctly deter-
mines the disturbance magnitude:

d̂1 = d̄.

If the disturbance d(t) changes, the estimate d̂k represents the ”mean” value
of d(t) in the time interval (t0, t1).

d1

d2

d4

d3

d

d0

tt0 t1 t2 t3 t4

Fig. 5.5 Disturbance d(t) and disturbance estimates d̂0, d̂1, d̂2...

For a scalar time-varying disturbance d(t) the disturbance estimation is
illustrated in Fig. 5.5, which shows the behavior of the disturbance d(t) and

the corresponding sequence of disturbance estimates. Here, d̂1 is the weighted
average of the disturbance d(t) for the time interval [t0, t1). Similarly, d̂2
describes a weighted average of the actual disturbance for the time interval
[t1, t2). If the disturbance remains constant over two time intervals, then in

the second time interval the estimate d̂k coincides with the true magnitude
of the disturbance. This happens in the example for t ≥ t4.

Summary of the Components. The event-based state-feedback loop has
the structure depicted in Fig. 5.6. It has the following components:

• the plant (5.1), (5.2),
• the control input generator (5.9), (5.10) which also estimates the distur-

bance according to Eqs. (5.17), (5.18), and
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• the event generator which includes a copy of the control input genera-
tor (5.9), (5.10) and the disturbance estimator (5.17), (5.18) and deter-
mines the event times tk according to Eq. (5.16).

At event times tk, (k = 0, 1, 2, ...) the measured state information x(tk) is
sent from the event generator towards the control input generator and is used
there as well as in the event generator to update the model state xs according
to xs(t

+
k ) = x(tk) and to determine the new disturbance estimate d̂k. Since

by assumption the data transmission is accomplished in no time, the models
in the control input generator and the event generator work synchronously.

Fig. 5.6 Event-based state-feedback control loop

5.2.4 Main Properties of the Event-Based State-Feedback Loop

The central properties to be investigated when considering event-based con-
trol concern the stability and the communication over the feedback link. The
main results of the subsequent analysis are the following:

• The state x(t) of the event-based control loop is GUUB and there exists
an upper bound on its approximation error in terms of emulating the
behavior of the continuous state-feedback loop (Theorem 5.1).

• There exists a lower bound on the minimum inter-event time (Theo-
rem 5.2).

• If the disturbances are sufficiently small, no event is generated for t > 0
(Lemma 5.4).
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Comparison between the Event-Based and the Continuous State-
Feedback Loop. The following theorem compares the event-based control
loop with the continuous state-feedback loop.

Theorem 5.1. [248] The difference

e(t) = x(t)− xCT(t)

between the state x(t) of the event-based state-feedback loop (5.1),
(5.2), (5.9), (5.10), (5.16) – (5.18) and the state xCT(t) of the con-
tinuous state-feedback loop (5.5), (5.6) is bounded from above by

‖e(t)‖ ≤ emax = ē ·
∫ ∞

0

∥∥∥eĀτBK
∥∥∥dτ. (5.19)

This theorem shows that the event-based controller can be made to mimic
a continuous state feedback system with arbitrary precision by accordingly
choosing the event threshold ē. It can be used to determine for every tolerable
upper bound on the approximation error ‖e(t)‖ the event threshold ē. The
price for a higher precision (smaller emax) is a more frequent communication
between the event generator and the control input generator. The state x(t)
remains in the set

x(t) ∈ Ωe(xCT(t)) = {x : ‖x− xCT(t)‖ ≤ emax},

which describes a bounded neighborhood of the state xCT(t) of the continuous
state-feedback loop for all times t as depicted in Fig. 5.7. Hence, as the state
xCT(t) of the continuous state-feedback loop is GUUB, the state x(t) of the
event-based state-feedback loop is GUUB as well.

x x(0)= (0)CT

x, xCT

t

{emax

Fig. 5.7 Behavior of the event-based feedback loop: Solid line: state
variable x(t) of the event-based control loop; dotted line: state variable
xCT(t) of the continuous control loop
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Minimum Inter-event Time. This paragraph shows that the minimum
inter-event time

Tmin = min
k

(tk+1 − tk)

of the event-based state-feedback loop is bounded from below and depends
upon the disturbance d(t). Assume that the disturbance estimation error

dΔ(t) = d(t)− d̂k is bounded by

‖dΔ(t)‖ ≤ γ dmax for t ≥ 0, (5.20)

with 0 ≤ γ ≤ 2. The minimum inter-event time Tmin is given by

Tmin = argmin
t

max
dΔ

{∥∥∥∥
∫ t

0

eA(t− τ)EdΔ(τ) dτ

∥∥∥∥ = ē

}
. (5.21)

Theorem 5.2. [248] For any bounded disturbance d(t), the min-
imum inter-event time Tmin of the event-based state-feedback
loop (5.1), (5.2), (5.9), (5.10), (5.16) – (5.18) is bounded from below
by T̄ (Tmin ≥ T̄ ) given by

T̄ = argmin
t

{∫ t

0

∥∥∥eAτE
∥∥∥ dτ =

ē

γ dmax

}
. (5.22)

This theorem highlights how the communication depends on the distur-
bances. This phenomenon contrasts with sampled-data control, where the
sampling frequency is chosen with respect to the plant properties (time con-
stants) rather than the disturbance magnitude.

As the lower bound for the inter-event time decreases by decreasing the
event threshold ē and increases for large thresholds ē, Theorems 5.1 and 5.2
show that a higher precision generally leads to a more frequent communica-
tion from the event generator towards the control input generator.

Small Disturbances. The disturbance is represented in the following as
d(t) = d̄d̃(t), where d̃(t) is an arbitrary finite vector function satisfying the
inequality

‖d̃(t)‖ ≤ 1 for t ≥ 0

and d̄ is the disturbance magnitude.

Lemma 5.4. [248] Suppose that the plant (5.1), (5.2) is asymptoti-
cally stable. Then, for every bounded disturbance d(t) = d̄d̃(t) with
magnitude d̄ satisfying the relation

|d̄| < ē∫∞
0
‖eAτE‖ dτ

= d̄UD (5.23)

the event generator does not generate any event for t > 0.
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This result gives a quantitative bound for the disturbance, for which no feed-
back occurs after the initial event at time t = 0. It shows that in event-based
control the communication is adapted to the severity of the disturbance. If
the disturbance is small enough, no feedback is necessary at all to meet the
performance requirements.

5.2.5 Extensions

The state feedback approach to event-based control presented in this section
has been extended in various ways. The main purpose of these extensions lies
in the relaxation of the assumptions stated in Section 5.2.1.

In order to make the approach more attractive for practical applications,
an event-based PI controller has been developed [222]. The extended scheme
guarantees setpoint tracking for constant reference and disturbance signals
while significantly reducing the communication compared to sampled-data
PI control.

The effect of model uncertainties has been analyzed by specifying upper
bounds on the uncertainties of the model parameters. The analysis shows
that model uncertainties affect both the approximation accuracy and the
frequency of communication but can be compensated by using more involved
disturbance estimators [219].

For dealing with immeasurable state variables, an event-based output-
feedback control has been proposed in [224]. There, a state observer is in-
cluded in the event generator in order to determine an approximate state
x̂(t) of the plant state x(t) based on the measured output y(t). By using an
adapted event condition which monitors the difference between the observer
state x̂(t) and the model state xs(t) and by sending the observer state x̂(tk)
at event times to the control input generator, a bound on the approximation
error and a minimum inter-event time can be guaranteed.

In networked control systems, the assumption of having an ideal commu-
nication channel is often violated. Hence, non-ideal effects like transmission
delays, packet loss or a quantization of the transmitted information have to
be taken into account. By modifying the structure of the event-based control
loop mainly in terms of adapting the update mechanism, a stable behavior
and a bounded communication can be preserved in all three cases if cer-
tain conditions on the delay, the number of consecutive packet losses or the
resolution of the quantization are met [221, 223, 225].

In this section, the event-based state-feedback loop has been analyzed by
evaluating the system behavior in between consecutive events. A different
approach to the analysis has been presented in [351], based on the formula-
tion of the event-based state-feedback loop as an impulsive system and which
allows to uniformly investigate the system dynamics at and between event
times. In contrast to the analysis presented in this section which only proves
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ultimate boundedness, the method presented in [351] also detects the asymp-
totic stability of the undisturbed event-based control system with stable plant
dynamics.

The scheme presented in this section refers to a continuous realization of
its components. As the control input generator and the event generator need
to be implemented on digital hardware, a discrete-time approach becomes
important. The main difference to the continuous approach is given by the
fact that events cannot be triggered at any time but only at the sampling
instants. The results obtained in [158, 220] are very similar to the continuous
situation but, as expected, deteriorate with an increasing sampling period.

Finally, to relax the necessity of linear dynamics, an extension to nonlinear
systems which are input-output linearizable has been investigated. Basically,
the consideration of nonlinear dynamics requires a more involved event condi-
tion by means of which the desired properties of event-based control in terms
of its stability and the boundedness of the communication can be proven
[348, 349].

Example 5.1 Event-based control of a thermofluid process

This example illustrates the behavior of the event-based state-feedback loop in
different scenarios. The plant is the thermofluid process shown in Fig. 5.8. The level
x1(t) and the temperature x2(t) of the liquid in the tank TB have to be stabilized
at the set-points by using the inflow u1(t) from tank T3 and the heating power
u2(t) as control inputs. Hot water inflow from tank HW is the scalar disturbance
d(t) to be attainuated.

The linearized model of the plant is given by

ẋ(t) = 10−3

(
−0.8 0

−1 · 10−7 −1.7

)
x(t) + 10−3

(
211 0
−108 20

)
u(t) + 10−3

(
148
−80

)
d(t)

with x0 = 0. The controller is chosen to be

K =

(
0.08 −0.02
0.17 0.72

)
,

for which the continuous closed-loop system (5.5), (5.6) is stable and has desired
disturbance attenuation properties. The event threshold ē is set to ē = 2 and the
event generator uses the supremum norm, for which the event condition reads as

‖xΔ(t)‖∞ = ‖x(t)− xs(t)‖∞ = 2. (5.24)

Simulation Results. In the first investigation (left-hand side of Fig. 5.9) the
plant is subject to a constant disturbance d(t) = d̄ drawn by the solid line in the
top subplot. After the initializing event at time t0 = 0, an event takes place at time
t1 due to the level behavior, where the equality

|xΔ,1(t1)| = |x1(t1)− xs,1(t1)| = 2 (5.25)
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