J. Lunze: Regelungstechnik, Band 2 (10. Auflage) Springer-Verlag 2020

Verzeichnis der mit MATLAB erzeugten Bilder

26. März 2020

Die folgende Tabelle enthält alle mit MATLAB (Version 2019b) erzeugten Bilder. Die Bildnamen leiten sich aus den M-Dateien ab, mit denen sie erzeugt wurden.

Abb.Nr.	Bildunterschrift D	ateiname
2.9	Übergangsfunktionsmatrix des Dampferzeugers \varSigma_{DE}	analde1.eps
2.10	Gewichtsfunktionsmatrix des Dampferzeugers $\Sigma_{\rm DE}$	analde2.eps
3.2	Steuerung der Rührkesselreaktoren in den vorgegebenen Zustand	stbreak1.eps
3.3	Steuerung der Rührkesselreaktoren in den vorgegebenen Zustand	stbreak2.eps
3.6	Umsteuerung der Rührkesselreaktoren mit stückweise konstanter Eingangsgröße	stbreak3.eps
3.7	Darstellung der Umsteuerung im Zustandsraum	stbreak4.eps
3.8	Umsteuerung bei unterschiedlicher Wahl des Zeitpunktes t_1 (in Minuten)	stbreak5.eps
3.12	Steuerbarer Unterraum für das Beispiel in allgemeiner (links) und in kanonischer Zustandsraumdarstellung (rechts)	nichtst1.eps
3.15	Verhalten der gekoppelten Rührkesselreaktoren	bobreak1.eps
3.16	Eigenbewegung der Reaktoren	bobreak2.eps
4.15	Ortskurve für die Magnetschwebebahn	zrfmagn4.eps
4.27	Fahrzeugabstand (oben) und Fahrzeugpositionen (unten) bei P-Regelung	Platoon2.eps
4.28	Fahrzeugabstand (oben) und Fahrzeugpositionen (unten) bei PI-Regelung	Platoon4.eps
4.29	Verhalten einer Fahrzeugkolonne	Platoon5.eps
4.34	Gewichtsfunktionsmatrix der Klärschlammverbrennungsanlage	koppelm1.eps
4.35	Matrix der Funktionen $\frac{g_{ij}^2(t)}{k_{sij}^2}$ der Klärschlammverbrennungsanlage	koppelm2.eps
4.36	Verlauf des Koppelfaktors für die Klärschlammverbrennungsanlage	koppelm3.eps
4.37	Matrix der Beträge der relativen Verstärkungsfaktoren der Klärschlammverbren- nungsanlage	koppelm4.eps
5.4	Übergangsfunktionsmatrix der AHL-Anlage	tunahl1.eps

5.5	Führungsübergangsfunktionen der I-geregelten AHL-Anlage für $a=0,005,\ 0,01$ und $0,02$	tunah15.eps
5.6	Führungsübergangsfunktionen der PI-geregelten AHL-Anlage (erste Reglereinstellung mit $b = 0, 0.5, 1, 2$ und 5)	tunah18.eps
5.7	Führungsübergangsfunktionen der PI-geregelten AHL-Anlage (zweite Reglereinstel- lung mit $b_1 = 0, 0, 5, 1$ und 2)	tunah19.eps
5.8	Übergangsfunktionsmatrix der AHL-Anlage bezüglich der modifizierten Eingangs- größe	tunahl2.eps
5.9	Wurzelortskurve des I-geregelten Systems	tunah13.eps
5.9	Ausschnitt der Wurzelortskurve mit Markierung der Eigenwerte für $a = 0.05$ (\diamond), 0,1 (\Box) und 0,2 (*)	tunahl4.eps
5.10	Wurzelortskurve der PI-geregelten AHL-Anlage bezüglich des Tuningfaktors für den P-Anteil	tunahl6.eps
5.10	Ausschnitt der Wurzelortskurve mit Markierung der Eigenwerte für $b = 0,5$ (\diamond), 1 (\Box) und 2 (*)	tunahl7.eps
6.3	Eigenbewegung der geregelten Reaktoren	<pre>zrfreak1.eps</pre>
6.6	Wurzelortskurve der Reaktorregelung	zrfreak2.eps
6.7	Eigenwerte des Regelkreises, die durch die Ausgangsrückführung bei unterschied- licher Wichtung $w_{22} = 0.5, 1, 2, 3, 5, 10$ erzeugt werden	zrfreak3.eps
6.8	Eigenbewegung der Reaktoren bei Ausgangsrückführung – und bei der ersten Zustandsrückführung	<pre>zrfreak4.eps</pre>
6.9	Eigenwerte des Regelkreises mit einer Ausgangsrückführung, die für unterschied- liche Wichtungen aus der zweiten Zustandsrückführung entsteht	zrfreak5.eps
6.11	Störübergangsfunktion des Netzes mit Zustandsrückführung bei einer Lasterhöhung um 100 MW	benglif1.eps
6.12	Eigenwerte des Netzes mit Zustandsrückführung	benglif2.eps
6.12	Eigenwerte des Netzes bei Verwendung der ersten dezentralen Regelung	benglif3.eps
6.13	Störübergangsfunktion des Netzes mit der ersten dezentralen Regelung	benglif4.eps
6.14	Regelkreiseigenwerte bei Verwendung der zweiten dezentralen Regelung	benglif5.eps
6.15	Störübergangsfunktion des Netzes mit der zweiten dezentralen Regelung	benglif6.eps
7.4	Gütegebirge des LQ-Problems für das invertierte Pendel	optguete1.eps
7.5	Pendelwinkel bei drei verschiedenen Zustandsrückführungen	optguete2.eps
7.5	Stellgröße bei drei verschiedenen Zustandsrückführungen	optguete3.eps
7.6	Gütegebirge bei veränderter Anfangsbedingung	optguete4.eps
7.9	Wurzelortskurve des geschlossenen Kreises bei Wichtungen mit $ ho ightarrow 0$ $\ldots \ldots$	optpend5.eps
7.10	Eigenbewegung des geregelten Flugzeugs bei veränderter Wichtungsmatrix	optflug1.eps

7.11	Ortskurve der offenen Kette (Flugzeug und Optimalregler)	optflug2.eps
7.12	Eigenbewegung des geregelten invertierten Pendels bei Verwendung der Wichtungsfaktoren $q = 0,1, 1$ und 10	optpend1.eps
7.13	Eigenbewegung bei Verwendung der Wichtungsmatrix (7.35)	optpend2.eps
7.14	Ortskurve der offenen Kette des invertierten Pendels	optpend3.eps
7.15	PN-Bild der offenen Kette des Pendels mit Optimalregler	optpend4.eps
8.6	Eigenbewegung des Pendels und des Beobachters	bobpend1.eps
8.7	Gestörte Messgrößen	bobpend7.eps
8.8	Beobachtungsergebnis bei stochastisch gestörter Messung	bobpend8.eps
8.9	Eigenbewegung des geregelten Pendels ohne und mit - Beobachter	bobpend3.eps
8.10	Eigenwerte des Regelkreises mit Beobachter	bobpend4.eps
8.11	Eigenbewegung des geregelten Pendels ohne und mit — Beobachter bei veränderten Beobachtereigenwerten	bobpend5.eps
8.12	Geregeltes Pendel mit reduziertem Beobachter - bzw. Zustandsrückführung	bobpend6.eps
9.5	Übergangsfunktionsmatrix der Regelstrecke	dnauq1.eps
9.6	Gershgorinband für den ersten und den zweiten Regelkreis	dnauq5.eps
9.6	Gershgorinband für den ersten und den zweiten Regelkreis	dnauq6.eps
9.7	Führungsübergangsfunktionsmatrix des Elektroenergienetzes mit dezentraler Kno- tenspannungsregelung	dnauq10.eps
9.9	Prüfung der verallgemeinerten Diagonaldominanz für die dezentrale Knotenspan- nungsregelung	dnauq4.eps
9.10	Verbessertes Gershgorinband für den dritten Regelkreis	dnauq8.eps
9.11	Vergleich der Breiten der Gershgorinbänder (— $\lambda_{\rm P}$)	dnauq9.eps
9.12	Amplitudengang der Fehlerschranken V_{11} und V_{12}	dnauq12.eps
9.13	Toleranzband für den Amplitudengang des ersten Regelkreises	dnauq11.eps
9.14	Führungsübergangsfunktion des ersten Regelkreises	dnauq13.eps
9.15	Führungsübergangsfunktionen des ersten Regelkreises nach Vergrößerung der Reg- lerverstärkung (- entkoppelter Regelkreis, dezentral geregeltes System)	dnauq17.eps
9.16	Breiten der Gershgorinbänder nach Erhöhung der Reglerverstärkung	dnauq18.eps
9.17	Amplitudengang der Fehlerschranken V_{11} und V_{12} nach Erhöhung der Reglerverstärkung	dnauq16.eps

9.18	Toleranzband für das Führungsverhalten des ersten Regelkreises nach Erhöhrung der Reglerverstärkung	dnauq14.eps
10.2	Eingangs- und Ausgangsgrößen der Regelstrecke	dissyst1.eps
10.3	Aliasing-Effekt	dissyst4.eps
10.4	Versteckte Schwingungen eines Systems dritter Ordnung	dissyst3.eps
10.7	Aliasing beim Abtasten des Rauschsignals	dmotor6.eps
10.8	Verhalten des gestörten Gleichstrommotors bei kontinuierlicher Regelung (oben) und bei zeitdiskreter Regelung (unten)	dmotor7.eps
10.9	Verbesserung des Störverhaltens durch Verwendung eines Antialiasing-Filters	dmotor8.eps
10.10	Wirkung des Haltegliedes bei einem sinusförmigen Signal	dissyst2.eps
10.11	Sinusförmiges Signal mit unterschiedlicher Abtastfrequenz	dissyst5.eps
11.6	Eigenbewegung eines Systems erster Ordnung mit $a_{\rm d} = -0.7$	dsystlol.eps
11.7	Vergleich von Übergangsfolge und Übergangsfunktion eines Systems zweiter Ord- nung	dsyst2o1.eps
11.9	Gewichtsfunktion und Gewichtsfolge des kontinuierlichen und des abgetasteten Systems	dsyst2o2.eps
11.11	Lage der Eigenwerte sowie Übergangsfolgen für fünf Systeme zweiter Ordnung	dsyst2o3.eps
11.13	Steuer- und Ausgangsfolge der Rührkesselreaktoren bei einer Abtastzeit $T = 0.8 \min$	dstbrea2.eps
11.14	Verhalten des Reaktors bei der Umsteuerung	dstbrea3.eps
11.15	Steuer- und Ausgangsfolge der Rührkesselreaktoren bei einer Abtastzeit $T = 1,1 \min$	dstbrea4.eps
11.16	Verhalten des Reaktors bei der Umsteuerung	dstbrea5.eps
11.18	Stückweise konstante Eingangsgröße zur Steuerung des Systems in den Endzustand $(1 \ 2)^{\mathrm{T}}$	dnotstb1.eps
12.3	Elementarfolgen der \mathcal{Z} -Transformation	dehochs1.eps
12.4	Dreidimensionale Darstellung von $ G(z) $	zuebert1.eps
12.5	Dreidimensionale Darstellung des Frequenzganges	zuebert2.eps
12.6	Frequenzkennliniendiagramm	zfbanal4.eps
12.7	Frequenzkennliniendiagramm, das auch den über der Abtastfrequenz liegenden Bereich zeigt	zfbanal5.eps
12.9	Lage der Pole vorgegebener Dämpfung in der s- und der z-Ebene	dwok1.eps
13.3	Ortskurve des kontinuierlichen Systems (links) und des zeitdiskreten Systems bei zwei Abtastzeiten (rechts)	zfbanal1.eps

13.5	Ortskurve der kontinuierlichen offenen Kette mit Totzeitglied zur Approximation der Wirkungen von Abtaster und Halteglied	zfbanal3.eps
14.1	Bodediagramm des kontinuierlichen und des zeitdiskreten Reglers bei $T=0,02\mathrm{s}$	dmotor2.eps
14.2	Führungsübergangsfunktion des drehzahlgeregelten Gleichstrommotors mit der Ab- tastzeit $T = 0.02$ s	dmotor3.eps
14.3	Bodediagramm des kontinuierlichen und des zeitdiskreten Reglers mit der Abtastzeit $T = 0.2 \mathrm{s}$	dmotor4.eps
14.4	Führungsübergangsfunktion des drehzahlgeregelten Gleichstrommotors mit der Abtastzeit $T = 0.2 \mathrm{s}$	dmotor5.eps
14.5	Vergleich der Frequenzkennlinien des kontinuierlichen und des zeitdiskreten Reglers –	drealk1.eps
14.6	Übergangsfolge des Gleichstrommotors	deadbea1.eps
14.7	Führungsübergangsfolge des geregelten Gleichstrommotors	deadbea2.eps
14.8	Führungsübergangsfolge des geregelten Gleichstrommotors nach Verkleinerung der Abtastzeit	deadbea3.eps
A.10	Eigenbewegung der geregelten Magnetschwebebahn	zrfmagn1.eps
A.11	Eigenbewegung der geregelten Magnetschwebebahn mit der zweiten Zu- standsrückführung im Vergleich zum Verhalten mit dem ersten Regler	<pre>zrfmagn2.eps</pre>
A.12	Eigenbewegung der geregelten Magnetschwebebahn mit der dritten Zu- standsrückführung im Vergleich zum Verhalten mit dem ersten Regler	<pre>zrfmagn3.eps</pre>
A.13	Eigenbewegung des geregelten Dampferzeugers bei unterschiedlicheer Wichtung der Ausgangsgröße	optrde1.eps
A.14	Führungsübergangsfunktionsmatrix des geregelten Dampferzeugers mit dem für $q = 10$ erhaltenen Regler	optrde2.eps
A.15	Führungsübergangsfunktion für den bei der neuen Wichtung erhaltenen Optimal- regler	optrde3.eps
A.16	Ortskurve der Determinante der Rückführdifferenzmatrix für unterschiedliche Wichtung	optrde5.eps
A.17	Störverhalten des Netzes mit PI-Zustandsrückführung für die Wichtungen mit $\rho = 1, 10, 100$	optful.eps
A.18	Eigenwerte des Regelkreises mit Zustandsrückführung	bobmagn1.eps
A.18	Eigenwerte des Regelkreises mit Beobachter	bobmagn3.eps
A.19	Eigenbewegung der geregelten Magnetschwebebahn mit Beobachter – und mit Zustandsrückführung	bobmagn2.eps
A.20	Eigenbewegung der geregelten Magnetschwebebahn mit dem schnelleren Beobach- ter – und mit Zustandsrückführung	bobmagn4.eps
A.25	Übergangsfunktionsmatrix des Mehrzonenofens	dnagaas1.eps
A.26	Frequenzkennlinien der dritten Heizzone	dnagaas2.eps
A.27	Führungsübergangsfunktion und Verlauf der Stellgröße des dritten Temperaturre- gelkreises	dnagaas3.eps

A.28	Prüfung der Diagonaldominanz	dnagaas5.eps
A.29	Führungsverhalten der ersten Heizzone bei Verwendung des Mehrgrößenreglers	dnagaas6.eps
A.30	Bodediagramm der Regelstrecke von Teilregler 1	dnafu1.eps
A.31	Störübergangsfunktionen von Netz 1 mit FÜ-Regelung	dnafu3.eps
A.32	Bodediagramm der Regelstrecke von Teilregler 2	dnafu4.eps
A.33	Störübergangsfunktionen mit FÜ-Regelung im Netz 2	dnafu6.eps
A.34	Prüfung der verallgemeinerten Diagonaldominanz	dnafu11.eps
A.35	Störübergangsfunktion des Energienetzes mit dezentraler FÜ-Regelung	dnafu15.eps
A.36	Generatorleistungen bei Laststörung von 100 MW	dnafu16.eps
A.37	Eigenwerte des zeitdiskreten Modells bei Veränderung der Abtastzeit	EigenwDiskrl.eps
A.40	Verhalten eines Systems erster Ordnung	dsyst1o2.eps
A.41	Ausgangsgröße des Oszillators mit Angabe der Abtastzeitpunkte	beobosz1.eps
A.43	Preisdynamik in der Landwirtschaft	landw1.eps
A.45	Netzkennlinienfehler bei sprungförmiger Erhöhung der Last im Netz 1 um 50 MW	dnafup4.eps
A.47	Bodediagramm des Teilnetzes 1	dnafup5.eps
A.48	Verhalten des geregelten Netzes 1 bei Lasterhöhung	dnafup7.eps
A.49	Überprüfung der Diagonaldominanz der Rückführdifferenzmatrix	dnafup11.eps
A.50	Störverhalten des dezentral geregelten Netzes	dnafup12.eps
A5.1	Übergangsfunktionsmatrix der AHL-Anlage	tunahl10.eps