
Edition MoRa

Jan Lunze

A + P + B = Av

   Q + C = 0

Linear Output Regulation 

- A Summary -





Linear Output Regulation

– A Summary –

JAN LUNZE

www.editionmora.de

July 28, 2021

Abstract. The report explains the well-known regulator equations of linear

multivariable control and demonstrates their application by an example. In the

linear output regulation problem, an exosystem generates an input to the plant,

which can be considered as a command signal or a disturbance. The aim is to

find a controller that makes the control error to vanish asymptotically. Then the

system is said to be regulated or to track the command signal. Both situations

are summarised under the term of output regulation.
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Summary of the regulator problem and its solution
Consider the plant

ΣS :

{

ẋ(t) = Ax(t) +Bu(t) + Pxv(t), x(0) = x0

e(t) = Cx(t) +Qxv(t)
(1)

with the m-dimensional input u(t) and the p-dimensional output e(t) that is interpreted as the

control error. The nv–dimensional signal xv(t) is generated by the exosystem

Σv : ẋv(t) = Avxv(t), xv(0) = xv0 (2)

(Fig. 1). The regulator problem is to find a controller such that the following three require-

ments are satisfied:

• Asymptotic stability: The controlled plant subject to the input xv(t) = 0 should be

asymptotically stable.

• Asymptotic regulation: The control error e(t) should vanish asymptotically for all initial

states x0 and xv0 of the plant ΣS and of the exosystem Σv:

lim
t→∞

‖e(t)‖ = 0. (3)

• Robustness: The requirement (ii) should be satisfied for all plant parameter perturbations

that do not de-stabilise the controlled plant.

The following assumptions are made:

(A1) The matrix Av of the exosystem Σv has only eigenvalues with nonnegative real part.

(A2) The pair (A,B) of the plant ΣS is stabilisable.

(A3) The pair

((

Av O

P A

)

, (Q, C)

)

is detectable.

The following results are reviewed in the succeeding sections. The regulator problem is well-

posed and a solution exists if and only if the eigenvalues of Av are not invariant zeros of the

plant:

rank

(

µI −A −B

C O

)

= n+ p, µ ∈ σ(Av). (4)

A solution to the regulator problem is obtained as follows:

1. Solve the regulator equations for the matrices Π and Γ :

Regulator equations:

{
AΠ + P +BΓ = ΠAv

Q+CΠ = O.
(5)

2. Find a state-feedback controller K such that A−BK is Hurwitz.

3. Design a state observer that generates, from the measured control error e(t), the appro-

ximate states x̂v(t) and x̂(t).

4. Then the following controller solves the regulator problem:

C : u(t) = −Kx̂(t) +Lx̂v(t) (6)

with

L = Γ +KΠ . (7)





J. LUNZE: Linear Output Regulation 1

1 Introduction

The regulator problem concerns the situation depicted in Fig. 1. The exosystem Σv gener-

ates the input xv(t) to the plant ΣS. The regulator problem is to find a control input u(t)
such that the output e(t), which represents the control error, vanishes asymptotically

lim
t→∞

‖e(t)‖ = 0

for all initial states x0 of the plant and xv0 of the exosystem. Then one says that the output

is regulated or asymptotic regulation occurs.

u

Sv
xv0

SS

x0

e

xv

Fig. 1: Regulator problem

A solution to the regulator problem exists if and only if the regulator equations (5)

given in the summary above have, for given parameters (A,B,C,P ,Q) of the plant ΣS

and Av of the exosystem Σv, a solution for the unknown matrices Π and Γ . Although

these equations are found in literature in several places, only a few explanations of them

together with advices how to use them in order to find a controller that solves this problem

have been published.

When looking at the equations (5), one may ask the following questions:

• What do the regulator equations say? Why are these equations necessary and suffi-

cient to ensure asymptotic regulation?

• How can these equations be solved for the unknown matrices Π and Γ?

• Under what conditions does a solution (Π ,Γ ) of these equations exist?

• How can the solution (Π ,Γ ) of the regulator equations be used to design a feedback

controller that ensures asymptotic regulation?

This report answers these questions for all who have the textbook knowledge provided

by [12] and [13]. In contrast, the regulator equations have been explained in literature like

in the monographs [9], [11] and [16] by using advanced topics of control theory like the

McMillan normal form of transfer function matrices or the geometric approach to system

theory.

In the original publications, the problem stated above has been posed as the general

servomechanism problem by E. J. DAVISON around 1972 in [2, 3, 4] and as the regulator

problem by B. A. FRANCIS around 1977 in [5]. In the given and several other references the

general fact has been extensively discussed that a feedforward solution cannot be robust, but

may solve the problem with the requirements (i) and (ii) included in the regulator problem
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below for exactly known plants, whereas a feedback solution may satisfy the additional

robustness requirement (iv). The feedback that solves the regulator problem is called a

regulator. Both solutions will be reviewed in this report.

The summary on p. v shows that the regulator theory provides two main results:

• Existence of a regulator: It is shown that under the assumptions (A1) – (A3) a

solution to the regulator problem exists if and only if the condition (4) is satisfied,

which means that the eigenvalues of Av must not be invariant zeros of the plant ΣS.

• Design of a regulator: A feedback controller solving the regulator problem can be

found by using the solution (Π ,Γ ) of the regulator equations (5) as follows. De-

sign a state observer that reconstructs, by using the measured control error e(t), the

state xv(t) of the exosystem and the state x(t) of the plant and denote these obser-

vation results by x̂v(t) or x̂(t), respectively. Furthermore, find a stabilising state

feedback of the plant with controller matrix K. Then a regulator is obtained by com-

bining the state observer with the controller (6) that has the controller matrices K

and L given by eqn. (7).

2 Regulator problem

2.1 Problem statement

The regulator problem is usually formulated as follows. The external signal xv(t) ∈ R
nv ,

which may be interpreted as a disturbance or a command signal (or both), is generated by

the so-called exosystem

Σv : ẋv(t) = Avxv(t), xv(0) = xv0 (8)

(Fig. 1). It is assumed that the matrix Av has only eigenvalues with nonnegative real part.

The plant

ΣS :

{

ẋ(t) = Ax(t) +Bu(t) + Pxv(t), x(0) = x0

e(t) = Cx(t) +Qxv(t)
(9)

has the m-dimensional input u(t) and the p-dimensional output e(t), which is interpreted

as the control error that should be made to vanish asymptotically.

The regulator problem is to find a controller such that the following three requirements

are satisfied:

(i) Asymptotic stability: The controlled plant subject to the input xv(t) = 0

should be asymptotically stable.

(ii) Asymptotic regulation: The control error e(t) should vanish asymptotically

for all initial states x0 and xv0 of the plant ΣS and of the exosystem Σv:

lim
t→∞

‖e(t)‖ = 0. (10)

(iv) Robustness: The requirement (ii) should be satisfied for all plant parameter

perturbations that do not de-stabilise the controlled plant.
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The requirements are enumerated as (i), (ii) and (iv) as in [12, 13], because control design

problems usually have additional requirements on the transient behaviour of the control

loop that are enumerated as (iii), which do not play any role in the regulator problem.

u

Sv

SS
e

xv

C

u

Sv

SS
e

xv

C

Fig. 2: Feedforward and feedback solution to the regulator problem

As the solution of the regulator problem, a feedforward controller or a feedback con-

troller is used (Fig. 2). Both situations will be considered in the next sections.

2.2 Assumptions

The regulator problem is usually solved under the following assumptions:

(A1) The matrix Av of the exosystem Σv has only eigenvalues with nonnegative real part.

(A2) The pair (A,B) of the plant ΣS is stabilisable.

(A3) The pair

((

Av O

P A

)

, (Q, C)

)

is detectable.

If (A1) is violated, the exosystem Σv can be reduced without changing the regulator prob-

lem such that finally (A1) is satisfied. If Av does not have any eigenvalue with nonnegative

real part, the regulator problem reduces to a stabilisation problem for the plant. If (A2) is

violated, no solution to the regulator problem exists. The assumption (A3) requires that the

series connection of Σv and ΣS is detectable. This condition is necessary to find a state

observer (52) for this series connection. In literature, this assumption is often replaced by

the requirement that the pair (A,C) is detectable, but then the state xv(t) of the exosystem

is assumed to be measurable.

The robustness requirement (iv) is important for the solution of the regulator prob-

lem, because it brings about a generality of the problem that removes specific parameter

combinations, as the following investigations will show. The assumptions (A2) and (A3)

satisfy these robustness requirements, because if the pair (A,B) is stabilisable, then the

pair (A+ δA,B + δB) is also stabilisable for sufficiently small perturbations δA and δB
and the same holds true for the detectability assumption.
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2.3 Disturbance attenuation and command following

The regulator problem stated above includes the problems of disturbance attenuation and of

asymptotic command following as special cases. In the left part of Fig. 3, Σd is a distur-

bance generator

Σd :

{

ẋd(t) = Adxd(t), xd(0) = xd0

d(t) = Cdxd(t).

The controller should compensate the disturbance d(t) acting on the plant

ΣS :

{

ẋ(t) = Ax(t) +Bu(t) +Ed(t), x(0) = x0

y(t) = Cx(t).

This problem can be formulated as a regulator problem by using the exosystem (8) with

xv(t) = xd(t),
Av = Ad and xv0 = xd0

and the plant model (9) with e(t) = y(t),

P = ECd and Q = O.

If the requirement (ii) is ensured, one says that the output y(t) = Cx(t) is regulated.

u y=e

Sd
xd0

SS
x0

d

u y

Sw
xw0

SS
x0

e
w

_

Fig. 3: Two interpretations of the regulator problem

The right part of Fig. 3 depicts the problem of command following with

Σw :

{

ẋw(t) = Awxw(t), xw(0) = xw0

w(t) = Cwxw(t)

representing the command signal generator. The output of the plant

ΣS :

{

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

e(t) = −C̃x(t) + Iw(t)

is the control error e(t). This problem is a regulator problem with the exosystem (8)

with xv(t) = xw(t),
Av = Aw and xv0 = xw0

and the plant (9) with

P = O, C = −C̃ and Q = Cw.
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If the requirement (ii) is satisfied, the output y(t) = −C̃x(t) is said to track the command

signal w(t).
In the literature, both the disturbance attenuation problem and the tracking problem are

said to pose the servo problem or the general regulator problem.

A comparison of Figs. 1 and 3 reveals that there is an important difference between the

two interpretations considered in this section and the general regulator problem. In partic-

ular, as far as command tracking is concerned, the information that is usually available for

a controller is the command signal w(t) and not the internal state xw(t) of the command

signal generator Σw. For the disturbance attenuation problem, the situation is “worse” in

the sense that usually no information at all is available for a controller. Generally the dis-

turbance d(t) is not measurable and the state xd(t) of the disturbance generator Σd cannot

be assumed to be known. These aspects should be kept in mind when reading Section 4,

where the state xv(t) of the exosystem is considered to be available as an input to the con-

troller. The assumption of a measurable state xv(t) will be removed in Section 5, where the

exosystem state is reconstructed from measured signals by a state observer.

2.4 Structure of the report

As a preliminary result, Section 3 considers a linear system subject to some input and shows

how the stationary solution, which describes the system response for large time t, can be

determined by a Sylvester equation. This equation will be extended in Section 4 to the

regulator equations and it will be shown that the existence of a solution to these equations

is a necessary and sufficient condition for a regulator to exist. The solution to the regulator

equations can be used as a feedforward controller that solves the regulator problem with

the requirements (i) and (ii). Section 5 extends this solution to a feedback controller. If the

regulator equations are satisfied and a state observer is used to reconstruct the states of the

exosystem and of the plant, the feedback controller given in this section solves the regulator

problem with all the requirements (i), (ii) and (iv). Section 6 illustrates the results by an

example.

3 Determination of the stationary solution of a linear system

3.1 Problem statement

This section shows that the stationary trajectory xs(t) or ys(t) of the state or the output,

respectively, of a linear system

Σ :

{

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t)
(11)

can be determined by solving a Sylvester equation. The input to the n–th order system Σ is

generated by the input generator

Σu :

{

ẋu(t) = Auxu(t), xu(0) = xu0

u(t) = Cuxu(t)
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with the state xu ∈ R
nu (Fig. 4). It is assumed that

• A is Hurwitz,

• Au has only eigenvalues with nonnegative real part.

Whereas the first assumption implies that the free motion and the transient response of

the system Σ vanish asymptotically, the second assumption has the consequence that nei-

ther u(t) nor y(t) and x(t) vanish asymptotically for almost all initial states xu0 of the input

generator Σu. Due to these assumptions, the systems Σ and Σu do not have eigenvalues in

common

σ(A) ∩ σ(Au) = ∅, (no-resonance condition), (12)

where σ(.) denotes the spectrum of a square matrix.

SSu
u

xu0 x0

y

Fig. 4: Structure considered to determine the stationary solution of the

system output y(t)

Problem statement. The long-term behaviour of the system Σ is denoted by xs(t)
and ys(t):

lim
t→∞

‖x(t)− xs(t)‖ = 0 (13)

lim
t→∞

‖y(t)− ys(t)‖ = 0. (14)

The question to be answered is: What is the relation between the trajectories xs(t) and ys(t)
of the system Σ and the state xu(t) of the input generator Σu?

3.2 Representation of xs(t) in terms of xu(t)

The following investigations will show that there exists an (n×nu)–matrix Π such that the

relation

xs(t) = Πxu(t) (15)

holds. To determine Π , introduce the state difference

ex(t) = x(t)−Πxu(t).

According to eqn. (13), the n–vector ex(t) vanishes asymptotically:

lim
t→∞

‖ex(t)‖ = 0. (16)

It follows the differential equation

ėx(t) = ẋ(t)−Π ẋu(t)

= Ax(t) +Bu(t)−ΠAuxu(t)

= Aex(t) +AΠxu(t) +BCuxu(t)−ΠAuxu(t).
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Since the matrix A is Hurwitz and the state xu(t) of the system Σu does not vanish,

eqn. (16) implies that the following term on the right-hand side of the last equation is iden-

tical to zero

AΠxu(t) +BCuxu(t)−ΠAuxu(t) = 0, t ≥ 0

and, hence, that the relation

AΠ +BCu = ΠAu (17)

is satisfied. Equation (17) is a Sylvester equation1 , which has a unique solution Π for

arbitrary matrices BCu if and only if the spectra of the matrices A and Au are disjoint as

stated in eqn. (12).

Lemma 1 Under the assumptions stated above, the stationary state trajectory xs(t) of the

system Σ has the representation (15), where the matrix Π is the solution of the Sylvester

equation (17).

Consequently, the state trajectory and the output trajectory of the system Σ have the prop-

erties (13) and (14) with

xs(t) = Πxu(t) (18)

ys(t) = CΠxu(t), (19)

which can be represented by the nu–th order system

Σs :







ẋu(t) = Auxu(t), xu(0) = xu0

xs(t) = Πxu(t)

ys(t) = CΠxu(t).

3.3 Intuitive explanation of the result

The question arises why is it possible to get such a simple relation (15) between the states

of the two systems Σ and Σu in the series connection of Fig. 4. An answer will be given in

this section for matrices A and Au that are diagonalisable.

It is well known (e. g. from [13], S. 45) that the state x(t) and the output y(t) of the

system (11) can be decomposed into three components

x(t) = xfree(t) + xs(t) + xt(t)

y(t) = yfree(t) + ys(t) + yt(t)

with

xfree(t) = eAtx0 and yfree(t) = CeAtx0

representing the free motion and ys(t) and xs(t) or yt(t) and xt(t) the stationary responses

or the transient responses of Σ, respectively. To explain the difference between xs(t) and

1JAMES JOSEPH SYLVESTER (1814 – 1897), English mathematician



8 J. LUNZE: Linear Output Regulation

xt(t), denote the eigenvalues of A by λi, (i = 1, 2, ..., n) and the eigenvalues of Au by µi,

(i = 1, 2, ..., nu). The input to the system Σ generated by Σu is written as

u(t) = eAutxu0

=

nu∑

i=1

uie
µitxui (20)

= U








e µ1txu1
e µ2txu2

...

e µnu txunu








with the (nu × nu)–matrix

U = (u1, u2, ...,unu
)

of the eigenvectors of Au and the transformed initial state







xu1
xu2

...

xunu








= U−1xu0.

The input consists of nu exponential functions e µit, (i = 1, 2, ..., nu). Due to the no-

resonance condition (12), the stationary state of the system Σ likewise consists of these

exponential functions

xs(t) =
nu∑

i=1

x̄i e
µitxui (21)

= X








e µ1txu1
e µ2txu2

...

e µnu txunu








(22)

with appropriate n–dimensional vectors x̄i, (i = 1, 2, ..., nu) that form the matrix

X = (x̄1, x̄2, ..., x̄nu
)

(cf. [13], Abschn. 2.4.3). That is, the system Σ changes only the magnitude of the expo-

nential functions e µit, but the exponents remain the same. In contrast, the transient be-

haviour xt(t) consists of n exponential functions e λit, (i = 1, 2, ..., n) with the exponents

fixed by the eigenvalues of A.

Therefore, it is reasonable to introduce a matrix Π that should satisfy the relation

X = ΠU

or, equivalently,

Π = XU−1.

The Sylvester equation (17) shows that this matrix Π exists and gives a way to determine Π

without the knowledge of X .
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3.4 Model transformation

The series connection Σ ◦Σu of the systems Σu and Σ is represented by

Σ◦Σu :







(

ẋu(t)

ẋ(t)

)

=

(

Au O

BCu A

)(

xu(t)

x(t)

)

,

(

xu(0)

x(0)

)

=

(

xu0

x0

)

y(t) = ( O C )

(

xu(t)

x(t)

)

.

(23)

This model can be simplified by using the solution Π obtained from the Sylvester equa-

tion (17) as follows. The state transformation

(

xu(t)

ex(t)

)

=

(

I O

−Π I

)

︸ ︷︷ ︸

T−1

(

xu(t)

x(t)

)

with T =

(

I O

Π I

)

leads to the transformed model

Σ◦Σu :







(

ẋu(t)

ėx(t)

)

=

(

Au O

O A

)(

xu(t)

ex(t)

)

,

(

xu(0)

ex(0)

)

=

(

xu0

x0 −Πxu0

)

y(t) = ( CΠ C )

(

xu(t)

ex(t)

)

with a block-diagonal matrix that decouples the movement of xu(t) and ex(t). Obviously,

eqns. (16), (18) and (19) hold and lead to the following statements:

x(t)
t→∞−→ xs(t) = Πxu(t)

= Π eAutxu0

y(t)
t→∞−→ ys(t) = CΠxu(t)

= CΠ eAutxu0.

3.5 Sylvester equation

There are several methods to solve the Sylvester equation (17)

−AΠ +ΠAu = B̃ (24)

for given (nu × nu)–matrix Au, (n × n)–matrix A and (n× nu)–matrix B̃ = BCu [14].

If the columns of the (n × nu)–matrix Π are put into a vector, linear equations for the

unknown elements of this matrix appear as follows. Then by applying a linear-equation

solver the matrix Π is obtained.
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Vectorisation of the Sylvester equation. The results (A.1) and (A.2) on matrix vectorisa-

tion given in Appendix A lead to the following reformulations

−vec(AΠ ) + vec(ΠAu) = vec(B̃)

− (I ⊗A) · vec(Π ) +
(
AT

u ⊗ I
)
· vec(Π ) = vec(B̃)

(
AT

u ⊗ I − I ⊗A
)
· vec(Π ) = vec(B̃)

and to the linear equation

Fx = b (25)

with

F = AT
u ⊗ In − Inu

⊗A

x = vec(Π )

b = vec(B̃).

For given F and b the vector x has to be found by a linear-equation solver.

In MATLAB, the function sylvester(A, B, C) is defined for the Sylvester equa-

tion

AΠ +ΠB = C

and has to be invoked to solve eqn. (24) for the matrices Au, A and Btilde as follows:

» Pi = sylvester(-A, Au, Btilde);

Sylvester’s theorem. Equation (25) and, equivalently, eqn. (24) should be universally

solvable (i. e. solvable for arbitrary matrices B̃). Then, according to Appendix B, the

matrix F has to have full row rank:

rank (F ) = n · nu.

To understand the solvability condition given below, assume that the matrix Au is a diagonal

matrix

Au =








µ1

µ2

. . .

µnu








.

Then F is a block diagonal matrix with the blocks

µiIn −A, i = 1, 2, ..., nu.

All these blocks have full rank if and only if the no-resonance condition (12) is satisfied.

This result also holds true for non-diagonalisable matrices Au.

Lemma 2 (Sylvester’s theorem)

The Sylvester equation (24) is universally solvable if and only if the no-resonance condi-

tion (12) is satisfied.
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From a system-theoretic viewpoint the existence condition stated by Lemma 2 is rea-

sonable, because the state xs(t) of the plant ΣS can be represented as a sum of the modes

of the system Σu only if the eigenvalues of Au are not eigenvalues of A. Otherwise, terms

like tke µit appear in xs(t), which cannot be represented by eqn. (18).

Example 1 Analytical solution to the Sylvester equation

To illustrate the solution of the Sylvester equation, consider a single-input single-output sys-

tem (11)

Σ :

{

ẋ(t) = Ax(t) + bu(t), x(0) = x0

y(t) = cTx(t)
(26)

subject to the first-order input signal generator Σu

Σu :

{

ẋu(t) = µxu(t), xu(0) = xu0

u(t) = xu(t),

where the vector xu(t) has been replaced by the scalar state xu(t). Hence, the plant gets the input

u(t) = xu0 e
µt.

The Sylvester equation (17) reads as

Aπ + b = µπ

with an unknown n–vector π. This equation can be solved for π with the result

π = (µI −A)−1b,

because the inverse matrix exists since, by assumption, µ is not an eigenvalue of A. Hence, the

state and the output of the plant (26) have the following properties:

x(t)
t→∞−→ πxu(t) = (µI −A)−1bxu0 e

µt

y(t)
t→∞−→ cTπxu(t) = cT(µI −A)−1bxu0 e

µt.

In the last line, the transfer function of (26) for the frequency s = µ appears as the “gain” with

which the input is amplified by the plant:

G(µ) = cT(µI −A)−1b. 2

3.6 Summary

The stationary responses xs(t) and ys(t) of the system

Σ◦Σu :







(

ẋu(t)

ẋ(t)

)

=

(

Au O

BCu A

)(

xu(t)

x(t)

)

,

(

xu(0)

x(0)

)

=

(

xu0

x0

)

y(t) = ( O C )

(

xu(t)

x(t)

)

(27)
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can be determined by solving the Sylvester equation

AΠ +BCu = ΠAu. (28)

The following statements hold:

• If the no-resonance condition

σ(A) ∩ σ(Au) = ∅ (29)

is satisfied, a unique solution Π to the Sylvester equation (28) exists.

• The no-resonance condition (29) is also necessary to make the Sylvester equation

universally solvable for perturbed systems ΣS.

• If the matrix A is Hurwitz, the state x(t) and the output y(t) of the system (27)

approach the following stationary responses asymptotically:

x(t)
t→∞−→ xs(t) = Πxu(t)

y(t)
t→∞−→ ys(t) = CΠxu(t).

4 The regulator equations

4.1 Preliminary observations

The following analysis should give an intuitive explanation of how a solution to the regula-

tor problem stated in Section 2.1 can look like. Assume that the plant ΣS is asymptotically

stable. Then, for arbitrary inputs, its free motion and its transient response vanish asymp-

totically and the output e(t) approaches the stationary solution es(t)

e(t)
t→∞−→ es(t)

(for an explanation of the stationary solution cf. Section 3). To check the requirement (ii),

only the stationary output es(t) has to be investigated.

u

Sv
xv0

SS

x0

e

xv

Fig. 5: Decomposition of the stationary control error e(t)

As the plant (9) has the two inputs xv(t) and u(t), its stationary solution es(t) has two

components, each depending on one of the inputs:

es(t) = esxv(t) + esu(t)
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(Fig. 5). As shown in Section 3, the component esxv(t) can be represented as

esxv(t) = (CΠ +Q)xv(t)

and it is a sum of the modes of the system Σv, all of which do not vanish asymptotically.

Consequently, the requirement (ii) can only be satisfied if the signal esu(t) is

esu(t) = −esxv(t). (30)

That is, the input u(t) has to consist of the same unstable modes as the exosystem state xv(t)
and one may expect that some matrix L exists such that the solution to the regulator problem

satisfies the relation

C : u(t) = Lxv(t). (31)

The regulator equations derived in the next section gives conditions on L.

As the stationary solution esxv(t) consists of unstable modes, its compensation accord-

ing to eqn. (30) requires that the input u(t) likewise consist of unstable modes. Hence, the

requirement (ii) is satisfied if and only if the stationary solution es(t) vanishes identically

(and not only asymptotically):

es(t) = 0, t ≥ 0. (32)

4.2 Derivation of the regulator equations

Consider the regulator problem with the requirements (i) and (ii), but without the robust-

ness claim (iv). Assume that the plant ΣS is asymptotically stable and, hence, due to the

assumption (A1) the following condition is satisfied:

σ(A) ∩ σ(Av) = ∅ (no-resonance condition). (33)

A solution (31) to the regulator problem exists under the conditions elaborated in the fol-

lowing analysis.

u
L

Sv
xv0

SS
x0

e

xv

S

_

Fig. 6: Feedforward solution to the regulator problem
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The overall system to be considered

Σ◦Σv :







(

ẋv(t)

ẋ(t)

)

=

(
Av O

P +BL A

)(

xv(t)

x(t)

)

,

(

xv(0)

x(0)

)

=

(

xv0

x0

)

e(t) = ( Q | C )

(

xv(t)

x(t)

)

(34)

is the series connection of the exosystem (8) and the controlled plant Σ described by

eqns. (9), (31) (Fig. 6). It satisfies the requirement (i) due to the assumption that the ma-

trix A is Hurwitz.

The stationary behaviour

xs(t) = Πxv(t)

of the system ΣS within the overall system Σ ◦Σv can be determined by using the Sylvester

equation

AΠ + P +BL = ΠAv, (35)

which is obtained for the system (34) in analogy to the Sylvester equation (28) for the

system (27). Due to eqn. (33), the solution Π of eqn. (35) exists and is unique. Hence, the

control error has the property

e(t)
t→∞−→ es(t) = (Q+CΠ )xv(t).

The system (34) satisfies the requirement (ii) stated as eqn. (32) for arbitrary initial

states xv0 and x0 if and only if the relation

Q+CΠ = O (36)

holds. Hence, eqn. (31) provides a solution to the regulator problem if and only if the

matrix L is chosen such that the solution Π of eqn. (35) satisfies the relation (36).

To illustrate this result, apply the state transformation

(

xv(t)

ex(t)

)

=

(

I O

−Π I

)

︸ ︷︷ ︸

T−1

(

xv(t)

x(t)

)

with T =

(

I O

Π I

)

to the model (34) to get, after using eqn. (35), the transformed model

Σ◦Σv :







(

ẋv(t)

ėx(t)

)

=

(

Av O

O A

)(

xv(t)

ex(t)

)

,

(

xv(0)

ex(0)

)

=

(

xv0

x0 −Πxv0

)

e(t) = ( Q+CΠ C )

(

xv(t)

ex(t)

)

with the solution

e(t) = (Q+CΠ )eAvtxv0 +CeAt(x0 −Πxv0).
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Since A is Hurwitz, the second term vanishes asympotically. The control error meets the

requirement (ii) if and only if the condition (36) is satisfied.

In summary, eqns. (35) and (36) are called the regulator equations:

AΠ + P +BL = ΠAv (37)

Q+CΠ = O. (38)

Lemma 3 (Feedforward solution of the regulator problem)

If the plant (9) is asymptotically stable, the regulator problem with the requirements (i) and

(ii) is solved by the feedforward controller (31) if and only if there exists a matrix Π that

satisfies the regulator equations (37), (38).

This lemma states a necessary and sufficient condition that the feedforward controller (31)

solves the regulator problem. It is, in the stated version, a test for a given controller ma-

trix L, because for any fixed L, the first regulator equation is a Sylvester equation that has

a unique solution Π due to the assumption (33). With this solution, the second regulator

equation has to be satisfied.

If the equations (37), (38) should also be used for design purposes, they have to be

solved for given matrices A, B, C, P , Q and Av for the unknown matrices Π and L.

Section 4.4 will explain how this solution can be found. In specific cases like the following

example an analytic solution is possible.

Example 2 Feedforward solution to the regulator problem

Consider the first-order exosystem

Σv : ẋv(t) = µxv(t), xv(0) = xv0

generating the command signal for the single-input single-output n–th order plant

ΣS :

{
ẋ(t) = Ax(t) + bu(t), x(0) = x0

e(t) = −c̃Tx(t) + xv(t).

Assume that the matrix A is Hurwitz and the eigenvalue µ nonnegative. Command following of

the controlled plant should be ensured by using the feedforward controller (31)

C : u(t) = lxv(t)

where l is a scalar controller parameter.

To determine the parameter l, the regulator equations (37), (38) are written down as

Aπ + bl = πµ

1− c̃Tπ = 0

with the n-dimensional vector π. The first equation leads to the expression

π = (µI −A)−1bl

and the second equation to

l =
1

c̃T(µI −A)−1b
.
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The inverse matrix exists due to the assumptions on A and µ. The result can be easily interpreted

in terms of the transfer function

G(s) = −c̃T(sI −A)−1b

of the plant between the input u(t) and the output e(t):

l = − 1

G(µ)
.

To understand that this solution satisfies the requirement (ii), set-up the model of the controlled

plant

Σ :

{

ẋ(t) = Ax(t) + b lxv(t), x(0) = x0

e(t) = −c̃Tx(t) + xv(t).

The transfer function of this system with input xv(t) and output e(t) is

G(s) = 1− c̃T(sI −A)−1b l

= 1− c̃T(sI −A)−1b

c̃T(µI −A)−1b

with the property

G(µ) = 0. (39)

As the free motion and the transient response of this system for the input xv(t) = xv0 e
µt vanish

asymptotically, the control error has the property

e(t)
t→∞−→ es(t) = G(µ)xv0 e

µt = 0

as required.

Discussion. The last part of the example has shown that the controller (31) introduces a zero s0 =
µ into the system Σ consisting of the controller and the plant. This zero blocks the influence of

the input xv(t) towards the control error e(t) as the output. Consequently, the plant output y(t) =

c̃Tx(t) asymptotically follows the command signal xv(t). 2

4.3 Extension to unstable plants

The results of Section 4.2 have been obtained under the condition that the plant is asymp-

totically stable. This section shows that the regulator equations can be easily extended for

unstable plants.

Due to the assumption (A2), a state feedback with the controller matrix K exists that

makes the matrix A − BK Hurwitz to satisfy the requirement (i). The controller (31) is

extended by this state feedback to get

C : u(t) = −Kx(t) +Lxv(t). (40)
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Then the model (34) of the overall system is replaced by

Σ ◦Σv :







(

ẋv(t)

ẋ(t)

)

=

(
Av O

P +BL A−BK

)(

xv(t)

x(t)

)

(

xv(0)

x(0)

)

=

(

xv0

x0

)

e(t) = ( Q | C )

(

xv(t)

x(t)

)

.

(41)

Now, the first regulator equation reads as

(A−BK)Π + P +BL = ΠAv

and can be re-formulated to get the regulator equations in their final form

AΠ + P +BΓ = ΠAv (42)

Q+CΠ = O (43)

with Γ = L −KΠ . For any stabilising feedback matrix K, the regulator equations (42),

(43) are solved for Π and Γ and the feedforward matrix is determined as L = Γ +KΠ .

The controller (40) is often re-formulated as

u(t) = −K(x(t)−Πxv(t)) + Γxv(t) (44)

to show that the first part −K(x(t) −Πxv(t)) affects the plant behaviour only as long as

the state x(t) is not equal to the stationary solution xs(t) = Πxv(t).

Theorem 1 (Feedforward solution of the regulator problem)

The regulator problem with the requirements (i) and (ii) is solved by the feedforward con-

troller (44) if and only if there exists a solution (Π ,Γ ) of the regulator equations (42),

(43) and K makes the matrix A−BK Hurwitz.

As the eqns. (37), (38) and (42), (43) have the same mathematical form, the regulator equa-

tions (42), (43) have a solution (Π ,Γ ) if and only if eqns. (37), (38) have a solution (Π ,L).
That is, the introduction of the state feedback K does not change the existence conditions

for a solution to the regulator problem.

Remark. The introduction of the feedback term −Kx(t) into the control law does not

mean that the solution (40) to the regulator problem is a feedback controller with respect

to xv(t), but the controller (40) remains to be a feedforward solution with respect to the

requirement (ii). Hence, the robustness requirement (iv) is not satisfied.
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4.4 Solution of the regulator equations

There are several numerical methods to solve linear matrix equations. To understand the

way of solution, write the two regulator equations (42), (43) as
(

I O

O O

)(

Π

Γ

)

Av −
(

A B

C O

)(

Π

Γ

)

=

(

P

Q

)

. (45)

For given matrices A, B, C, P , Q and Av, the two matrices Π and Γ should be found such

that this equation is satisfied. Due to the multiplication of the left term by the matrix Av

from the right, there is no explicit solution to this problem. One way to determine the

required matrices, which will be explained below, uses a vectorisation of the equations that

leads to a set of linear equations represented by

Fx = b, (46)

which has to be solved, for a given matrix F and vector b, by a linear-equation solver to get

the unknown vector x.

Reformulation of the regulator equations. With the preliminary transformations (A.1)

and (A.2) derived in Appendix A, eqn. (45) or (42), (43) lead to the following equivalent

statements

ΠAv −AΠ −BΓ = P

−CΠ = Q

vec (ΠAv −AΠ −BΓ ) = vec(P )

vec (ΠAv)− vec (AΠ )− vec (BΓ ) = vec(P )
(
AT

v ⊗ I
)
· vec(Π )− (I ⊗A) · vec(Π )− (I ⊗B) · vec(Γ ) = vec(P )

−vec (CΠ ) = vec(Q)

− (I ⊗C) · vec(Π ) = vec(Q)
( (

AT
v ⊗ I

)
· vec(Π )− (I ⊗A) · vec(Π )− (I ⊗B) · vec(Γ )

− (I ⊗C) · vec(Π )

)

=

(

vec(P )

vec(Q)

)

( (
AT

v ⊗ I
)
− (I ⊗A) − (I ⊗B)

− (I ⊗C) O

)(

vec(Π )

vec(Γ )

)

=

(

vec(P )

vec(Q)

)

and to a linear equation of the form (46) with

F =

( (
AT

v ⊗ I
)
− (I ⊗A) − (I ⊗B)

− (I ⊗C) O

)

= AT
v ⊗

(

In On×m

Onv×n Onv×m

)

− Inv
⊗
(

A B

C Op×m

)

(47)

x =

(

vec(Π )

vec(Γ )

)

and b =

(

vec(P )

vec(Q)

)

. (48)
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After eqn. (46) has been solved for the unknown vector x, the required matrices Π and Γ

are obtained by reshaping the first n · nv elements of x as the (n × nv)–matrix Π and the

remaining m · nv elements as the (m× nv)–matrix Γ .

In a MATLAB script, these steps are carried out with the following commands. Store

the required data in the matrices A, B, C, P, Q and Av and in the integer variables n, m, p

and nv. Then the matrix F and the vector b are obtained according to eqns. (47) and (48)

as follows:

» I_n = eye(n);

» I_nv =eye(nv);

» F=[kron(Av’,I_n)+kron(I_nv,-A), kron(I_nv,-B);

kron(I_n,-C) zeros(nv*p,nv*m))];

« b=[P(:); Q(:)];

The linear equation (46) is solved by the function call x = F\b, which finds the solution x

in the least-square sense even if x is underdetermined or overdetermined by eqn. (46):

» x=F\b;

Then the required solutions are

» Pi = reshape(x(1:n*nv),n,nv);

» Gamma = reshape(x(n*nv+1:end),m,nv);

4.5 Solvability of the regulator equations

The statement of the regulator equations as eqn. (46) can be used to discuss the solvability of

these equations. A linear equation (46) has a solution if and only if the nv(n+ p)–vector b

lies in the image of the (nv(n+ p)× nv(n +m))–matrix F :

rank (F ) = rank (F b). (49)

However, the robustness requirement (iv) can only be satisfied if the problem to find the

vector x in eqn. (46) is well-posed as Appendix B discusses in detail. Equation (46) is

universally solvable if and only if the matrix F has full row rank

rank (F ) = nv(n+ p), (50)

which is a stronger condition and ensures that any nv(n + p)–vector b satisfies eqn. (49).

Equation (50) has two consequences. First, it can be satisfied only if m ≥ p holds, that is,

if the plant ΣS has at least as many inputs as outputs. Second, it leads to the condition (51)

below on the plant zeros, which is obtained as follows.

Assume that the matrix Av is a diagonal matrix

Av =








µ1

µ2

. . .

µnv








.
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Then the matrix obtained from eqn. (47) is a block diagonal matrix

F =








F 1

F 2

. . .

F nv








with the blocks

F i =

(

µiI −A B

C O

)

, i = 1, 2, ..., nv.

F has full row rank as required in eqn. (50) if and only if the relations

rank

(

µI −A −B

C O

)

= n+ p, µ ∈ σ(Av) (51)

hold, where p is the dimension of e(t). The minus sign before B has been added to show

the coincidence of this condition with the definition of the transmission zeros of the plant

([13], Definition 2.3). It has been shown in literature that the condition (51) is also obtained

for non-diagonalisable matrices Av.

Lemma 4 (Existence of a solution to the regulator equations)

The regulator equations (42), (43) are well-posed and a solution exists if and only if the

condition (51) is satisfied, i. e., if the eigenvalues of Av are not transmission zeros of the

plant ΣS.

5 A robust feedback solution

5.1 State feedback solution to the regulator problem

The robustness requirement (iv) with respect to plant parameter variations can only be en-

sured by introducing a feedback C of the control error e(t) as shown in Fig. 7. This section

will demonstrate that a combination of a Luenberger observer reconstructing the exosystem

state xv(t) and the plant state x(t) with the feedforward control (40) leads to a feedback

solution of the regulator problem that satisfies all the requirements (i), (ii) and (iv).

u
C

Svxv0

SSx0

e

xv

Fig. 7: Feedback solution of the regulator problem
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Luenberger observer. As the state xv(t) of the system Σv and the state x(t) of the plant

are generally not measurable, a Luenberger observer

O :







(
˙̂xv(t)

˙̂x(t)

)

=

(

Av O

P A

)(

x̂v(t)

x̂(t)

)

+

(

O

B

)

u(t)

+

(

G1

G2

)

(e(t)− ê(t)),

(

x̂v(0)

x̂(0)

)

=

(

x̂v0

x̂0

)

ê(t) = ( Q C )

(

x̂v(t)

x̂(t)

)

is used to reconstruct both state vectors. By inserting the observer feedback, the following

representation is obtained:

O :







(
˙̂xv(t)

˙̂x(t)

)

=

(

Av −G1Q −G1C

P −G2Q A−G2C

)(

x̂v(t)

x̂(t)

)

+

(

O

B

)

u(t)

+

(

G1

G2

)

e(t),

(

x̂v(0)

x̂(0)

)

=

(

x̂v0

x̂0

)

ê(t) = ( Q C )

(

x̂v(t)

x̂(t)

)

.

(52)

The matrix G = (GT
1 , GT

2 )
T has to be chosen so that the observer O is asymptotically

stable, which can be ensured by using well-known state-feedback methods [13].

Feedback solution to the regulator problem. By using the reconstructed states x̂v(t) and

x̂(t) the feedforward control law (40) can be implemented as follows:

u(t) = (L −K)

(

x̂v(t)

x̂(t)

)

. (53)

Remember that the feedback matrix K makes the matrix A−BK Hurwitz and that

L = Γ +KΠ (54)

is obtained from the solution (Π ,Γ ) of the regulator equations (42), (43). The combination

of eqn. (53) with the observer (52) leads to the feedback controller

C :







(
˙̂xv(t)

˙̂x(t)

)

=

(

Av −G1Q −G1C

P −G2Q+BL A−G2C −BK

)(

x̂v(t)

x̂(t)

)

+

(

G1

G2

)

e(t),

(

x̂v(0)

x̂(0)

)

=

(

x̂v0

x̂0

)

u(t) = ( L −K )

(

x̂v(t)

x̂(t)

)

,

(55)
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which can be abbreviated as

C :

{

ẋr(t) = Arxr(t) +Bee(t), xr(0) = xr0

u(t) = Kxxr(t)
(56)

to illustrate that it is a dynamical feedback of the control error e(t) towards the control

input u(t).

Theorem 2 (Feedback solution of the regulator problem)

Consider the regulator problem under the assumptions (A1) – (A3). There exists a so-

lution (Π ,Γ ) to the regulator equations (42), (43) if and only if the condition (51) is

satisfied. Then the controller C defined in eqn. (55) solves the regulator problem

• if the matrix K is chosen so as to make the matrix A−BK Hurwitz,

• if the observer feedback (GT
1 , G

T
2 )

T makes the state observer (52) asymptotically

stable, and

• if the feedback matrix L is determined by eqn. (54).

Then the controller (55) is called a regulator.

5.2 Analysis of the closed-loop system

The following investigations should prove Theorem 2 by demonstrating that the closed-loop
system satisfies the requirements (i), (ii) and (iv) of the regulator problem. The system con-
sisting of the exosystem (8), the plant (9) and the regulator (55) has the following model:

Σ◦Σv :













ẋv(t)
ẋ(t)
˙̂xv(t)
˙̂x(t)







=







Av O O O

P A BL −BK

G1Q G1C Av −G1Q −G1C

G2Q G2C P −G2Q+BL A−G2C −BK













xv(t)
x(t)
x̂v(t)
x̂(t)







e(t) = ( Q C | O O )







xv(t)
x(t)
x̂v(t)
x̂(t)







.

With the state transformation







xv(t)
x(t)

∆xv(t)
∆x(t)







=







I O O O

O I O O

I O −I O

O I O −I







︸ ︷︷ ︸

T−1







xv(t)
x(t)
x̂v(t)
x̂(t)







with T = T−1,
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which introduces the state differences

∆xv(t) = xv(t)− x̂v(t)

∆x(t) = x(t)− x̂(t),

the model of the closed-loop system Σ gets the new form

Σ◦Σv :













ẋv(t)
ẋ(t)

∆ẋv(t)
∆ẋ(t)







=








Av O O O

P +BL A−BK −BL BK

O O Av −G1Q −G1C

O O P −G2Q A−G1C














xv(t)
x(t)

∆xv(t)
∆x(t)







e(t) = ( Q C | O O )







xv(t)
x(t)
x̂v(t)
x̂(t)







(57)

with the initial state 





xv(0)
x(0)

∆xv(0)
∆x(0)







=







xv0

x0

xv0 − x̂v0

x0 − x̂0







.

This system satisfied the requirements of the regulator problem as follows:

(i) For xv0 = 0, the representation of Σ ◦Σv reduces to

Σ◦Σv for xv0 = 0 :











ẋ(t)
∆ẋv(t)
∆ẋ(t)



 =






A−BK −BL BK

O Av −G1Q −G1C

O P −G2Q A−G1C




 ·

·





x(t)
∆xv(t)
∆x(t)





e(t) = ( C | O O )





x(t)
x̂v(t)
x̂(t)



 .

This system is asymptotically stable because A −BK is Hurwitz and the matrix in

the lower right part coincides with the matrix of the observer (52), which is Hurwitz

due to the selection of G1 and G2. Hence, the requirement (i) of the regulator prob-

lem is satisfied.

(ii) To prove that asymptotic regulation occurs, remember that the state observer (52) has

the property

lim
t→∞

(

∆xv(t)

∆x(t)

)

= 0



24 J. LUNZE: Linear Output Regulation

for arbitrary initial states. Hence, the “second part” of the system (57) vanishes and

can be deleted for large time t. The remaining part of the model coincides with the

system (41), which has been proved to be regulated if the regulator equations (42),

(43) are satisfied and L is chosen according to eqn. (54). Hence, the requirement (ii)

of the regulator problem is satisfied.

(iv) Due to the condition (51), the regulator equations are well-posed and, thus, solutions

exist even if the plant is perturbed. Furthermore, the stabilisation of the plant by the

feedback matrix K is robust against parameter perturbations. Hence, the feedback

controller (55) provides a robust solution to the regulator problem.

Interpretation. The most interesting point is the fact that the regulator equations (42),

(43) are the same for the feedforward solution (40) and for the feedback solution (55).

That is, the implementation of the controller in a feedback version to satisfy the robustness

requirement (iv) does not introduce any additional constraints. The feedback controller

includes the model of the exosystem, which is referred to as the internal-model principle.

The feedback controller given above is not the only solution to the regulator problem.

If the existence condition (51) of a regulator is satisfied, several solutions may be used. In

particular, if the plant is asymptotically stable, the matrix K = O satisfies the conditions

stated in Theorem 2 and the observer for the plant state can be removed. Furthermore,

it is well-known that the dynamical order of state observers can be reduced or replaced

by reduced-order observers. If the plant is not asymptotically stable, an output feedback

u(t) = −Kyy(t) may exist to stabilise it.

5.3 Regulator design algorithm

The controller design is summarised in Algorithm 1.

Algorithm 1 Regulator design

Given: Plant ΣS satisfying assumptions (A2), (A3)

Exosystem Σv satisfying assumption (A1).

1. Find a stabilising state-feedback K such that A−BK is Hurwitz.

2. Solve the regulator equations (42), (43) to get the controller matrix

L = Γ +KΠ .

3. Find feedback matrices G1 and G2 to solve the state-observation problem.

4. Set-up the feedback controller (55).

Result: Feedback controller (55) that solves the regulator problem.

Steps 1 and 3 can be accomplished with the help of well-known feedback and observer

design methods [13]. In Step 2 the way of solution to the regulator equations given in

Section 4.4 can be used.
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6 Example

Consider the problem to move a point mass on a circle. The two state variables of the

exosystem Σv with

Av =

(

0 −ω

ω 0

)

, xv0 =

(

1

0

)

describes the required x-coordinate and y-coordinate of the mass at time t. The vector xv(t)
rotates around the unit circle in the x/y-plane with the frequency ω.

The point mass gets the two forces u1(t) = fx(t) and u2(t) = fy(t) that act in the two

coordinate directions and the plant ΣS has the model (9) with

A =







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0







, B =







0 0
1
m

0
0 0
0 1

m







, P = O, x(t) =







x(t)
ẋ(t)
y(t)
ẏ(t)







C = −
(

1 0 0 0
0 0 1 0

)

, Q = I

with m denoting the mass. The following parameters are used:

m = 10kg, ω = 1
rad

s

when measuring the distances in meters and the time in seconds. The point mass starts in

the position

x0 =







1
2

√
2

0

−1
2

√
2

0







.

Theorem 1 leads to the following design steps. First, a state-feedback controller

u(t) = −Kx(t)

should be found such that the matrix A−BK is Hurwitz. For the eigenvalues

λ1 = −0.25, λ2 = −0.4, λ3 = −0.5, λ4 = −0.6

in the set Lambda the matrix

» K=place(A, B, Lambda);

K= 1.9561 9.0349 -0.5597 -1.2167

-0.5600 -1.2175 1.6939 8.4651

is found. The solution to the regulator equations is obtained as described in Section 4.4:
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Pi =

1 0

0 -1

0 1

1 0

Gamma =

-10 0

0 -10

Then the controller (44) is used with these parameters. The top part of Fig. 8 shows that

the two components of the control error e(t) vanish within around 20 seconds. The lower

part of the figure depicts the x-coordinate with the dashed line indicating the command

signal generated by the exosystem. Obviously, the regulator problem is solved (without the

robustness requirement (iv)).

Fig. 8: Behaviour of the point mass with the feedforward

controller (44)

To show that this controller is sensitive to parameter variations, the mass is increased

to 13 kg and the result shown in Fig. 9. After the parameter changes, command tracking can

no longer be reached.

Now, the application of the feedback solution according to Theorem 2 is demonstrated.

According to Algorithm 1, after the design steps 1 and 2, which have already been accom-

plished, an observer should be found to reconstruct the state vectors of the exosystem and

of the point mass. For the observer (52) the feedback matrix

G =

-1.8409 -3.9952

5.3103 -1.1427

2.4799 -4.7804

-0.2947 -2.2310

6.4637 2.8364

2.9083 0.4202
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Fig. 9: Behaviour with increased mass

moves the eigenvalues of the observer to the set

» LambdaBeob=[-1 -1.2 -1.3 -1.5 -1.6 -1.7];

The controller (55) leads to the behaviour of the point mass shown in Fig. 10, where the

state observer had a zero initial state. The behaviour is similar to that of the point mass with

the feedforward controller but now the controller is robust against parameter variations. If,

again, the mass is increased, a similar behaviour results, as Fig. 11 shows.

Fig. 10: Behaviour of the point mass with feedback controller

7 References and extensions

The earliest and most cited references concerning the regulator problems are [2, 3, 4] and

[5]. There are only a few monographs that explain this problem in detail like [9] (Chapter 1),
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Fig. 11: Point mass with feedback controller with m = 13 kg

[11] (Chapter 4) and [16] (Chapter 9).

The regulator equations have several consequences, which have not been mentioned

in this report. First, they lead to the Internal-Model Principle requiring that any feedback

solution to the regulator problem has to include the model of the exosystem [7, 8]. In the

feedback solution given in Section 5 this model is part of the Luenberger observer. Second,

an analysis of the controlled plant shows that zeros play an important role for the signal

transmission from the exosystem through the controlled plant towards the control output to

satisfy the requirement (ii) (cf. [6] and the discussion in Example 2).

As mentioned in Section 4.4, the solution to the regulator equations is unique if the

plant has the same number of inputs and outputs. Otherwise linear-equation solvers find a

solution that is optimal in some error-norm sense. A detailed analysis of the latter situation

has been published in [1]. Accordingly, if the control input is underdetermined, one may

use an energy-efficient input, whereas if the regulator equations do not have any solution

the “most accurate” input with respect to some performance criterion should be used.

An extension of the output regulation problem to multi-agent systems with agents hav-

ing identical dynamics has been obtained in [10, 18] and generalised to agents with indi-

vidual dynamics in [15]. The robustness properties of these solutions have been the topic

of [17].
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Appendix A: Preliminary results of matrix vectorisation

The operation vec(.) is used to reshape a matrix as a vector in which all the columns of the matrix

are written one below the other. In the definition of this operation

vec(Π ) =








π1

π2

...

πnv








for Π = (π1 π2 ...πnv
)

the vectors πi, (i = 1, 2, ..., nv) are the columns of the matrix Π .

The vectorisation of the product AΠ can be represented in terms of the vectorisation of the

matrix Π as

vec(AΠ ) = (I ⊗A) · vec(Π ) (A.1)

with ⊗ denoting the Kronecker product. To understand this relation, consider the following trans-

formations:

AΠ = A (π1 π2 ...πnv
)

= (Aπ1 Aπ2 ... Aπnv
)

vec(AΠ ) = vec(Aπ1 Aπ2 ... Aπnv
)

=








A

A

. . .

A















π1

π2

...

πnv








= (I ⊗A) · vec(Π )

Likewise, the vectorisation of the product ΠAv can be written in terms of vec(Π ) as

vec(ΠAv) =
(

AT

v ⊗ I
)

· vec(Π ), (A.2)

because the relations

ΠAv = (π1 π2 ...πn)








a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...

an1 an2 · · · ann








=





n∑

j=1

aj1πj

n∑

j=1

aj2πj ...

n∑

j=1

ajnπj





vec(ΠAv) =








∑n

j=1
aj1πj

∑n

j=1
aj2πj

...
∑n

j=1
ajnπj
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=








a11I a21I · · · an1I
a12I a22I · · · an2I

...
...

...

a1nI a2nI · · · annI















π1

π2

...

πn








=
(

AT

v ⊗ I
)

· vec(Π )

hold.

Appendix B: Well-posedness of linear equations

This appendix summarises results on the well-posedness of linear equations as stated in [16], Sec-

tion 9.2. A mathematical problem is called well-posed if it has a solution and it remains solvable

after a small perturbation of the data occurring in the problem.

The linear equation

Fx = b (B.1)

should be solved for a given (m × n)–matrix F and an m–vector b for the n–vector x. It is well

known that a solution exists if the vector b belongs to the image of F

b ∈ im(F ) (B.2)

or, equivalently, if the following condition is satisfied:

rank (F ) = rank (F b).

If F is decomposed into its column vectors

F = (f1 f2 ...fn)

the last two equations say that b can be represented as a linear combination

b =

n∑

i=1

xif i

of these vectors, in which the elements xi of the vector x appear as coefficients. Consequently,

eqn. (B.2) is a necessary and sufficient condition for the linear equation (B.1) to have a solution.

In the general case, a small perturbation of the vector b can destroy the solvability of eqn. (B.1)

and, hence, this equation is not well-posed. If the rank of F is less than m

rank (F ) < m,

then the image of F is a subset of R
m and only specific m–vectors b satisfy the requirement (B.2).

However, a small perturbation generally moves these specific vectors b out of im(F ).
In contrast, if

rank (F ) = m

holds and, consequently,

im(F ) = R
m,

any m–vector b belongs to im(F ) and, hence, the linear equation (B.1) has a solution for all pertur-

bations of b. This result is summarised in the following lemma:
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Lemma 5 The linear equation Fx = b, which is to be solved for the vector x, is well-posed if and

only if

rank (F ) = m. (B.3)

As a consequence, one has to distinguish between the solvability of the linear equation (B.1) for

specific F and b (also called the individual solvability) and the solvability for general F and b

(called the universal solvability). The well-posedness of the linear equation concerns the universal

solvability and requires the matrix F to possess the property (B.3).

As the regulator problem includes the robustness requirement (iv), the well-posedness of the

Sylvester equation and of the regulator equations are required, which make the conditions given in

the main part of this report to be necessary, although for specific systems violating these conditions

a solution of the regulator equations may exist.
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