J. Lunze: Regelungstechnik, Band 1 (12. Auflage) Springer-Verlag 2020

Verzeichnis der mit MATLAB erzeugten Bilder

23. März 2020

Die folgende Tabelle enthält alle mit MATLAB (Version 2019b) erzeugten Bilder. Die Bildnamen leiten sich aus den M-Dateien ab, mit denen sie erzeugt wurden.

Abb.Nr.	Bildunterschrift	Dateiname
1.9	Verhalten des Behälters bei einer Steuerung in der offenen Wirkungskette (links) und einer Regelung (rechts)	vorstbehl.eps
1.10	Verhalten des Behälters bei Regelung und Vorsteuerung	vorstbeh3.eps
1.11	Störverhalten des Behälters	vorstbeh4.eps
4.9	Trajektorie eines Systems dritter Ordnung im Zustandsraum	zustra4.eps
4.10	Vektorfeld eines schwingungsfähigen Systems	vekfeld1.eps
4.11	Verlauf von Strom und Spannung des Reihenschwingkreises	zustral.eps
4.11	Verlauf von Strom und Spannung des Reihenschwingkreises	zustra2.eps
5.1	Eigenbewegung eines Systems erster Ordnung für $x_0=1$	eigenpt1.eps
5.2	Erzwungene Bewegung eines Systems erster Ordnung für sprungförmige Eingangsgröße (5.6)	eigenpt2.eps
5.6	Eigenbewegung der Verladebrücke	verhkr1.eps
5.7	Erzwungene Bewegung der Verladebrücke	verhkr2.eps
5.8	Summe von Eigenbewegung und erzwungener Bewegung der Verladebrücke	verhkr3.eps
5.13	Vektorfeld des Gleichstrommotors (links im $i_{\rm A}/\omega$ -Koordinatensystem; rechts im transformierten Zustandsraum $\tilde{x}_1/\tilde{x}_2)$	vekfeld2.eps
5.17	Übergangsfunktion eines Systems zweiter Ordnung	syst2or1.eps
5.19	Gewichtsfunktion von zwei Systemen zweiter Ordnung	syst2or2.eps
5.22	Übergangsverhalten und stationäres Verhalten eines Systems erster Ordnung	station2.eps
5.23	Verhalten eines Oszillators bei Resonanz	station3.eps
5.25	Eingangsgröße, Ausgangsgröße und Position der Masse m_1 bei Erregung durch $u(t)=\mathrm{e}^{0.0344t}\sin 1.206t$	nullst1.eps
5.26	Verhalten des Feder-Masse-Dämpfer-Systems bei sinusförmiger Erregung $u(t)=\sin 1{,}206t$	nullst2.eps

5.29	Verhalten des Feder-Masse-Dämpfer-Systems für das vom Eingangsgrößengenerator erzeugte Signal $u(t)$	nullst5.eps
5.32	Übergangsfunktion von P-, PT_1 - und PT_2 -Glied	syst2or3.eps
5.35	Übergangsfunktionen von PT ₂ -Gliedern mit kleiner Dämpfung	syst2or7.eps
5.36	Übergangsfunktionen und Gewichtsfunktionen von PT_n -Gliedern $(n=1,2,,5)$	ptngll.eps
5.46	Verlauf der Eingangs- und Ausgangsgrößen einfacher Übertragungsglieder	syst2or5.eps
5.47	Vergleich der Übergangsfunktionen des vollständigen — und des vereinfachten Modells des Gleichstrommotors	modaggr1.eps
5.48	Näherung eines PT ₃ -Gliedes durch ein PT ₁ -Glied mit derselben Summenzeitkonstante	pt1appr1.eps
5.50	Experimentell bestimmte Übergangsfunktion	syst2or4.eps
5.53	Übergangsfunktion und Gewichtsfunktion eines Raumes	raumtp1.eps
5.54	Übergangsfunktion und Eigenbewegung des Raumtemperaturregelkreises	raumtp2.eps
6.7	Verhalten eines Feder-Masse-Schwingers bei sinusförmiger Erregung unterschiedlicher Frequenz	frequg1.eps
6.8	Ortskurve eines nicht sprungfähigen Systems: Verlauf für ein System dritter Ordnung	ortsk1.eps
6.11	Funktionen $y(t) = \mathrm{e}^{\delta t} \sin \omega t$ mit unterschiedlicher Dämpfung δ	ehochst1.eps
6.13	Übergangsverhalten und stationäres Verhalten eines instabilen Systems erster Ordnung	station4.eps
6.15	Dreidimensionale Darstellung von $ G(s) $	laplace1.eps
6.16	Dreidimensionale Darstellung des Amplitudenganges $ G(\mathrm{j}\omega) $	laplace2.eps
6.19	Eingangsgröße und Ausgangsgröße des in Aufgabe 6.10 betrachteten Systems .	station5.eps
6.33	Übergangsfunktionen von Schwingungsgliedern mit unterschiedlicher Dämpfung und derselben Zeitkonstante $T=1$ und statischen Verstärkung $k_{\rm s}=1$	pt2bode2.eps
6.34	Übergangsfunktion von PT ₂ -Gliedern mit derselben Dämpfung $d=0.4$ und unterschiedlichen Zeitkonstanten $T=0.3,\ 0.5,\ 0.7,\ 0.9$ und 1	syst2or10.eps
6.35	Übergangsfunktion von PT $_2$ -Gliedern mit Polen $\mathrm{Re}\{s_i\}=-0.1$	syst2or9.eps
6.37	Übergangsfunktionen von PT_2 -Gliedern mit unterschiedlicher Dämpfung d und derselben Eigenfrequenz $\omega_0=1$	syst2or8.eps
6.38	Bodediagramm von PT2-Gliedern mit $k_{\rm s}=1,\ T=1$ und $0 < d < 1$	pt2bode1.eps
6.41	Ortskurven von PT ₂ -Gliedern mit $k_s=1,\ T=1$ und $d=0,1,0,3,0,5,0,7$ und 1	Syst2or11.eps
6.42	Abhängigkeit von $ G(j\omega_r) $ und $ G(j\omega_0) $ — von der Dämpfung d (bei $ k_s =1)$	bodedia2.eps
6.43	Ortskurve von PT _n -Gliedern (Gesamtbild links und Ausschnitt um den Nullpunkt rechts)	bodedia6.eps

6.44	PN-Bild und Übergangsfunktionen von PT ₂ -Gliedern	syst2or6.eps
6.47	Übergangsfunktion des Systems $G(s,s_0)=-\frac{3}{s_0}\frac{s-s_0}{(s+1)(s+3)}$ für unterschiedliche Werte von s_0	pt2bode6.eps
6.49	Bodediagramm zur Übertragungsfunktion (6.126)	bodedia3.eps
6.50	Bodediagramm zur Übertragungsfunktion (6.127)	bodedia4.eps
6.51	Bodediagramm zur Übertragungsfunktion (6.128)	bodedia5.eps
6.53	Geradenapproximation eines Amplitudengangs	geraden1.eps
6.54	Amplitudengang eines hydraulischen Ruderstellsystems	geraden2.eps
6.55	Bodediagramm des Allpassgliedes (6.133) mit $T=1\mathrm{s}$	nichtmi2.eps
6.56	Übergangsfunktion des Allpassgliedes $G_{\rm A}(s)=\frac{-Ts+1}{Ts+1}$ im Vergleich zu der des PT $_1$ -Gliedes $\frac{1}{Ts+1}$ mit $T=1{\rm s}$	pttbode3.eps
6.58	Übergangsfunktion eines minimalphasigen Systems und der Reihenschaltung dieses Systems mit einem Allpassglied $G_{\rm A}(s)=\frac{-Ts+1}{Ts+1}$	nichtmil.eps
6.60	Verhalten des Wasserkraftwerkes bei Leistungserhöhung von $50\mathrm{MW}$ auf $55\mathrm{MW}$	turbinel.eps
6.63	Steuerung des minimalphasigen Systems Σ_1 (—-) und des nichtminimalphasigen Systems Σ_2 ()	NichtminReak4.eps
6.64	Trajektorien des minimalphasigen Behältersystems Σ_1 (links) und des nichtminimalphasigen Systems Σ_2 (rechts) im Zustandsraum	NichtminReak2.eps
6.67	Bodediagramm des Totzeitgliedes	pttbode1.eps
6.68	Ortskurven und Übergangsfunktionen zweier totzeitbehafteter Systeme	pttbode4.eps
6.69	Übergangsfunktion von PT_n -Näherungen des Totzeitgliedes mit $T_{\mathrm{t}}=1\mathrm{s}$	pttbode2.eps
6.70	Frequenzkennliniendiagramme von vier Systemen	bodenyq1.eps
6.72	Bodediagramm des Raumes	raumtp3.eps
6.73	Ortskurve des Raumes	raumtp4.eps
7.4	Bodediagramm des Führungsfrequenzgangs mit Kennzeichnung wichtiger Kennwerte	pt2bode4.eps
7.6	Beispiel für die Amplitudengänge von $S(\mathrm{j}\omega)=G_\mathrm{d}(\mathrm{j}\omega)$ und $T(\mathrm{j}\omega)=G_\mathrm{w}(\mathrm{j}\omega)$.	empffkt1.eps
7.11	Störübergangsfunktion eines Regelkreises mit Proportionalregler ($k_{\rm P}=1.5$ und $10)$	regelkr6.eps
7.12	Störübergangsfunktion eines Regelkreises mit I-Regler ($T_{\rm I}=0.1,\ 0.5$ und 1.5)	regelkr7.eps
7.13	Betrages des Regelfaktors $R(\mathrm{j}\omega)$	empffkt2.eps
7.14	Führungsübergangsfunktion des Regelkreises	gleichgew3.eps

7.15	Regelfaktor	gleichgew5.eps
7.16	Verhalten des Regelkreises bei sinusförmiger Störung für $T_{\rm I}=5{\rm s}$ (—) und $T_{\rm I}=1{\rm s}$ ()	gleichgew6.eps
7.17	Betrag des Regelfaktors $R(\mathrm{j}\omega)$ bei instabiler Regelstrecke	empffkt3.eps
7.18	Verhalten des Fahrzeugs bei sinusförmiger Störung (ohne aktive Dämpfung, —- mit aktiver Dämpfung)	gleichgew2.eps
7.19	Verschiebung der Störübertragungsfunktion durch die Regelung	gleichgew1.eps
7.27	Solltrajektorie $w(t)$, $\dot{w}(t)$ und $\ddot{w}(t)$ sowie Stellgröße $u(t)$ für den Rührkesselreaktor bei $t_{\rm e}=8{\rm min}$	perfregtemp1.eps
7.28	Solltrajektorie $w(t),~\dot{w}(t)$ und $\ddot{w}(t)$ sowie Stellgröße $u(t)$ für den Rührkesselreaktor bei $t_{\rm e}=3{\rm min}$	perfregtemp3.eps
7.29	Umsteuerung des Reihenschwingkreises mit konstanter Stellgröße	PerfregRSK1.eps
7.30	Stationäres Verhalten bei veränderlicher und bei konstanter Stellgröße	PerfregRSK3.eps
7.34	Bodediagramm und Übergangsfunktion eines phasenabsenkenden Korrekturgliedes ($T=10\mathrm{s},\ T_\mathrm{D}=1\mathrm{s}$)	korrgl1.eps
7.35	Bodediagramm und Übergangsfunktion eines phasenanhebenden Korrekturgliedes ($T_1=1\mathrm{s},\ T_D=10\mathrm{s}$)	korrgl2.eps
8.6	Abbildung der Nyquistkurve durch die Rückführdifferenzfunktion $F(s)$	nyqukri8.eps
8.9	Ortskurve einer offenen Kette zweiter Ordnung für veränderte Reglerverstärkung	pt2nyqu1.eps
8.10	Ortskurve der offenen Kette fünfter Ordnung für $k_{\rm P}=120$ (links) und $k_{\rm P}=40$ (rechts)	nyqukri1.eps
8.11	Ortskurve zweier instabiler offener Ketten, die zu stabilen Regelkreises führen (links: ein instabiler Pol; rechts: zwei instabile Pole)	nyqukri2.eps
8.12	Ortskurve einer offenen Kette siebenter Ordnung (Gesamtbild (links) und Ausschnitt (rechts))	nyqukri7.eps
8.14	Ortskurve einer I-Kette (links) und einer Kette mit Pol $s_1 = -0.1$ (rechts)	nyqukri3.eps
8.15	Ortskurve einer I-Kette mit Totzeit $\mathit{T}_{t} = 0 \dots 4$	nyqukri9.eps
8.19	Bodediagramm eines Systems mit positivem Phasenrand	nyqukri6.eps
8.21	$\label{thm:model} \mbox{Modell des Gleichstrommotors bei verändertem Tr\"{a}gheitsmoment} \ J \qquad \dots \dots \dots$	fklmotr10.eps
8.22	Toleranzband für die Ortskurve des Gleichstrommotors	fklmotr12.eps
8.23	Fehlerschranke $ar{G}_{\mathrm{M}}(\mathrm{j}\omega)$ für das Regelstreckenmodell	fklmotr7.eps
8.25	Toleranzband für die Ortskurve eines Systems dritter Ordnung mit Modellunbestimmtheiten	robstab1.eps
8.26	Prüfung der Stabilitätsbedingung (8.50)	fklmotr13.eps
8.27	Toleranzband für die Ortskurve der offenen Kette des Motorregelkreises für $J=0.1-0.5$	fklmotr6.eps

8.27	Toleranzband für die Ortskurve der offenen Kette des Motorregelkreises für $J=0,1,,1$	fklmotr16.eps
8.28	Schar der Führungsübergangsfunktionen des geregelten Motors bei $J=0,1,\dots,0,5$	fklmotr4.eps
9.2	Übergangsfunktion der Regelstrecke	ziegler1.eps
9.3	Führungsübergangsfunktion des Temperaturregelkreises für unterschiedliche Reglertypen	ziegler2.eps
9.3	Führungsübergangsfunktion des Temperaturregelkreises für PID-Regler mit unterschiedlicher Nachstellzeit $T_{\rm I}$	ziegler3.eps
9.4	Störübergangsfunktion des Temperaturregelkreises	ziegler4.eps
10.1	Übergangsfunktion eines Systems dritter Ordnung für unterschiedliche Lage des Pols s_3	domew1.eps
10.3	Führungsübergangsfunktion $\hat{h}_{\rm w}(t)$ des Regelkreises für Dämpfungsfaktor $d=0.4$ 0.8	pt2bode3.eps
10.4	Übergangsfunktion eines Schwingungsgliedes mit Polen bei $\omega_e=10$ und $\delta_e=1,,10$	schwgll.eps
10.5	Abhängigkeit der Überschwingweite Δh vom Winkel ϕ_{d}	deltah2.eps
10.6	Übergangsfunktion eines Schwingungsgliedes mit Polen auf den Dämpfungsgerade mit $\phi_{\rm d}=65^{\circ}$	schwg13.eps
10.7	Übergangsfunktion eines Schwingungsgliedes mit Polen bei $\delta_e=1$ und $\omega_e=1,,10$	schwgl2.eps
10.10	Übergangsfunktion und Gewichtsfunktion eines Systems mit zwei reellen Polen	Deltah3.eps
10.11	Vergleich zweier System mit reellen bzw. konjugiert-komplexen Polen	Deltah4.eps
10.12	Wurzelortskurve eines Regelkreises (\square für $k=0,25, *$ für $k_{krit}=2$)	wok1.eps
10.14	Wurzelortskurve mit Markierung der Pole $*$ des Regelkreises bei der kritischen Reglerverstärkung $k_{\rm Pkrit}$	wok7.eps
10.17	Wurzelortskurve eines nichtminimalphasigen Systems	wok6.eps
10.20	Wurzelortskurve des Pendels mit P-Regler	wokentw1.eps
10.20	Wurzelortskurve des Pendels mit Korrekturglied (Pole □ für die kritische Verstärkung)	wokentw2.eps
10.21	Wurzelortskurve bei genauer Kompensation des Regelstreckenpols durch die Nullstelle des Reglers	wokentw3.eps
10.21	Wurzelortskurve bei ungenauer Kompensation des Regelstreckenpols durch die Nullstelle des Reglers	wokentw4.eps
10.22	Eigenbewegung des Regelkreises bei $\phi(0)=0.1\mathrm{rad}$	wokentw5.eps
11.2	Abhängigkeit der Überschwingweite Δh von der Dämpfung d	fuhrg1.eps
11.3	Abhängigkeit der Überschwingweite Δh vom Einstellfaktor a	deltahl.eps

11.4	Zusammenhang zwischen Phasenrand Φ_{R} und Dämpfung d	phirdl.eps
11.8	Störübergangsfunktion bei verzögerter Störung ($d=0,4,\ T=1,\ k_{ m yd}=1$)	storreg1.eps
11.9	$e_{ m m}$ und Δe in Abhängigkeit von $T_{ m r}=rac{T_{\Sigma}}{T}$ und dem Parameter d bei $k_{ m yd}=1$	storreg2.eps
11.9	$e_{ m m}$ und Δe in Abhängigkeit von $T_{ m r}=rac{T_{\Sigma}}{T}$ und dem Parameter d bei $k_{ m yd}=1$	storreg4.eps
11.17	Bodediagramm der Regelstrecke (untere Kurven) und des Reglers (obere Kurven)	fklentw1.eps
11.18	Bodediagramm der offenen Kette mit PI-Regler	fklentw2.eps
11.19	Führungsübergangsfunktion des PI-geregelten Systems	fklentw3.eps
11.20	Bodediagramm der offenen Kette mit PI-Regler und Korrekturglied	fklentw4.eps
11.22	Führungsübergangsfunktion des Regelkreises mit PI-Regler und Korrekturglied () sowie mit Korrekturglied und Verstärkungsanhebung (—)	fklentw5.eps
11.23	Bodediagramm der Regelstrecke — und gewünschter Amplitudengang der offenen Kette	Ziegler5.eps
11.24	Amplitudengang der offenen Kette mit PI-Regler (11.16) — und gewünschter Amplitudengang	Ziegler6.eps
11.25	Führungsübergangsfunktion des Temperaturregelkreises mit dem PI-Regler (11.16)	Ziegler7.eps
11.26	Vergleich von Regelstrecke und gewünschter offener Kette für die verschärften Güteforderungen	Ziegler8.eps
11.27	Amplitudengang der offenen Kette mit dem Regler $K_{\mathrm{PI}}(s)K_{\mathrm{Korr}}(s)$	Ziegler10.eps
11.28	Führungsübergangsfunktion des Temperaturregelkreises für die verschärften Güteforderungen	Ziegler11.eps
11.29	Bodediagramm des Gleichstrommotors	fklmotr1.eps
11.30	Bodediagramm der offenen Kette bestehend aus Gleichstrommotor und PI-Regler	fklmotr2.eps
11.31	Führungsübergangsfunktion und Störübergangsfunktion des geregelten Gleichstrommotors	fklmotr9.eps
12.3	Führungsübergangsfunktionen der entworfenen Temperaturregelkreise	modmatc2.eps
12.11	Übergangsfunktion der Regelstrecke	smithpr1.eps
12.12	Führungsübergangsfunktion des PI-geregelten Systems ohne Totzeit	smithpr2.eps
12.13	Führungsübergangsfunktion des geregelten Reaktors bei Verwendung des PI-Reglers () bzw. des Smithprädiktors (—)	smithpr3.eps
12.14	Führungsübergangsfunktion des geregelten Reaktors mit Smithprädiktor bei unterschiedlichen Totzeiten	smithpr5.eps
12.17	Führungsübergangsfunktion des geregelten Reaktors, wenn der Smithprädiktor mit fehlerbehaftetem Modell realisiert wird	smithpr6.eps
12.18	Amplitudengang zur Überprüfung der robusten Stabilität des Smithprädiktor-Regelkreises	smithpr7.eps

A.21	Ausgangsgröße des Behältersystems bei impulsförmiger Erregung	behalt1.eps
A.23	Vergleich der Gewichtsfunktion mit der Ausgangsgröße des Behältersystems bei impulsförmiger Erregung	behalt2.eps
A.24	Verlauf des Blutalkoholspiegels	ptngl2.eps
A.27	Stationäres Verhalten des PT ₂ -Gliedes	syst2or12.eps
A.30	Geradenapproximation des hydraulischen Stellantriebs	geraden3.eps
A.31	Bodediagramm des PT ₁ -Gliedes	BodeInterpr1.eps
A.31	Stationäres Verhalten des PT ₁ -Gliedes	BodeInterpr2.eps
A.32	Bodediagramm und stationäres Verhalten des I-Gliedes	BodeInterpr4.eps
A.32	Bodediagramm und stationäres Verhalten des I-Gliedes	BodeInterpr5.eps
A.33	Vergleich von stationärem Verhalten () und erzwungener Bewegung (—) für das PT ₁ -Glied	BodeInterpr3.eps
A.33	Vergleich von stationärem Verhalten () und erzwungener Bewegung (—) für das I-Glied	BodeInterpr6.eps
A.34	Bodediagramm des Feder-Masse-Schwingers	frequg2.eps
A.35	Bodediagramm der Verladebrücke	verhkr4.eps
A.36	Ortskurve des RC-Gliedes	Pt2nyqu2.eps
A.38	Bodediagramm des Gleichstrommotors	fklmotr15.eps
A.39	Ortskurven der vier Systeme	bodenyq2.eps
A.40	Verhalten des Hochhauses bei sinusförmiger Erregung	Taipeh4.eps
A.41	Vergleich des Verhaltens mit und ohne Dämpfer	Taipeh5.eps
A.42	Vergleich des Amplitudenganges mit und ohne Dämpfer	Taipeh3.eps
A.43	Ortskurve der Regelstrecke für $k=1,\ 2$ und 5	regelkr2.eps
A.43	Ortskurve der offenen Kette	regelkr3.eps
A.44	Ortskurve des Führungs- bzw. Störverhaltens des Regelkreises	regelkr4.eps
A.49	Solltrajektorie $w_{[0,6]}$ und Ableitungen $\dot{w}(t), \ \ddot{w}(t)$	Carbrklin1.eps
A.50	Stellgröße $u_{[0,6]}$ und Geschwindigkeit $v(t)$	Carbrklin3.eps
A.52	Ortskurve der offenen Kette der Lautsprecheranlage für unterschiedliche Mikrofon- Lautsprecher-Entfernungen	lautspr1.eps

A.52	Ortskurve der Telefon-Radio-Anordnung für $d=0.3$	lautspr3.eps
A.53	Ortskurve und Bodediagramm der D-Kette	phrandl.eps
A.53	Ortskurve und Bodediagramm der D-Kette	phrand2.eps
A.55	Ortskurve der Anordnung Drehrohrofen – Klinkerkühler	kuehler1.eps
A.56	Sekundärlufttemperatur bei impulsförmiger Erregung (oben: ungeregelt; unten: mit Sekundärlufttemperaturregelung)	kuehler2.eps
A.57	Wurzelortskurve des P-geregelten Gleichstrommotors	fklmotr14.eps
A.57	Wurzelortskurve der P-geregelten Verladebrücke	verhkr6.eps
A.58	Wurzelortskurve für das P-geregelte System	wok2.eps
A.58	Wurzelortskurve für den Regelkreis mit dynamischem Regler (Pole \square für $k=15)$	wok3.eps
A.59	Führungsübergangsfunktion des Regelkreises	wok4.eps
A.60	Wurzelortskurve des Hydraulikantriebs mit P-Regler (links) und mit PT ₁ -Regler (rechts)	hydraul1.eps
A.62	Wurzelortskurve für P-Regelung (links: Vorderradlenkung, rechts: Hinterradlenkung)	raddyn1.eps
A.63	Verhalten des geregelten Fahrrades mit Vorderradlenkung	raddyn2.eps
A.64	Lenkwinkel β und Kraftverlauf $F_{\mathbf{z}}$ bei Vorder- und Hinterradlenkung im Vergleich	raddyn4.eps
A.65	Lenkwinkel β und Kraftverlauf $F_{\rm z}$ bei rampenförmiger Lenkwinkelveränderung	raddyn3.eps
A.67	Wurzelortskurve für positive Reglerverstärkung $k_{\rm P}$ (links) und für negative Reglerverstärkung $k_{\rm P}$ (rechts; Pole \Box für $k_{\rm P}=0.2$)	wok5.eps
A.68	Wurzelortskurve zur Bestimmung des kritischen Widerstandes	aufgwok1.eps
A.70	Rollbewegung des ungeregelten Schiffes bei impulsförmiger Anregung	schiff1.eps
A.71	Wurzelortskurve des Stabilisatorregelkreises (Pole \square bei $k=0,\!35)$	schiff3.eps
A.72	Bewegung des stabilisierten Schiffes bei impulsförmiger Anregung	schiff4.eps
A.73	Bodediagramm des ungeregelten () und des stabilisierten Schiffes ()	schiff2.eps
A.74	Bodediagramm des Flugzeugs als Regelstrecke	fklflug1.eps
A.75	Bodediagramm des Reglers	fklflug2.eps
A.76	Bodediagramm der offenen Kette	fklflug3.eps
A.77	Störverhalten des Flugregelkreises	fklflug4.eps

A.78	Bodediagramm der offenen Kette bei Berücksichtigung des Messgliedes	fklflug5.eps
A.79	Bodediagramm der Regelstrecke und gewünschter Amplitudengang der offenen Kette	konvoil.eps
A.80	Bodediagramm der offenen Kette	konvoi2.eps
A.81	Führungsübergangsfunktion des Abstandsregelkreises	konvoi3.eps
A.82	Wurzelortskurve mit P-Regler bzw. mit differenzierendem Korrekturglied	konvoi4.eps
A.84	Bodediagramm der Regelstrecke () und der gewünschten offenen Kette ()	FKLLeerlauf1.eps
A.85	Störverhalten des Leerlaufdrehzahlregelkreises bei Laständerung $M_{\rm L}(t)=\bar{d}\sigma(t)$	FKLLeerlauf3.eps
A.87	Umgezeichnetes Blockschaltbild des Sensors	airbagk2.eps
A.88	Linearisierung des nichtlinearen Zusammenhanges zwischen $u_{\rm c}$ und $F_{\rm e}$	airbag1.eps
A.89	Frequenzkennlinien der offenen Kette	airbag2.eps
A.90	Messergebnis bei Beschleunigung $3g$	airbag4.eps
A.91	Verschiebung des Amplitudenganges der offenen Kette	airbag5.eps
A.92	Messergebnis bei $a(t)=20g\sigma(t)$	airbag6.eps
A4.3	Ergebnisse der zwei Experimente mit dem Wärmeübertragers	waermet1.eps