
3
Consensus in multi-agent systems

This chapter introduces the consensus problem for multi-agent systems and gives so-
lutions to this problem for various communication constraints. The main consensus
condition requires that the communication structure has to possess a spanning tree.
The results of this chapter provide the basis for the synchronisation methods described
in Chapter 4.

3.1 Consensus problem

The consensus problem is an important step towards the control of multi-agent systems. A
networked controller should make the state xi(t) of all agents to asymptotically approach a
common value x̄

lim
t→∞

xi(t) = x̄, i = 1, 2, ..., N,

which is called the consensus value. A crucial aspect of this problem is the fact that x̄ is not
prescribed by the control task but appears as the result of “negotiations” among the agents. It
will be shown later how x̄ depends upon the initial states of the agents and the network structure.

The consensus problem is characterised by the following assumptions (Fig. 3.1):

• The agents Pi, (i = 1, 2, ..., N) have integrator dynamics and, thus, are described by a
single differential equation

Pi : ẋi(t) = ui(t), xi(0) = xi0, (3.1)

in which xi(t) denotes the scalar state and ui(t) the scalar input of the i-th agent.
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Fig. 3.1: System Σ considered in the consensus problem

• The local controllers Ci, (i = 1, 2, ..., N) act as proportional controllers that feed back the
differences between the agent state xi(t) and the states xj(t), (j ∈ Ni) of the neighbouring
agents:

Ci : ui(t) = −
N∑

j=1,j �=i

aij(xi(t)− xj(t)). (3.2)

The coefficients aij are the elements of the adjacency matrix AG of the communication
graph. Hence, the sum on the right-hand side of eqn. (3.2) is effective for all neighbours
j ∈ Ni of the agent Pi, which leads to the equivalent representation

Ci : ui(t) = −
∑

j∈Ni

aij(xi(t)− xj(t)). (3.3)

Equations (3.2) and (3.3) are also called the consensus protocol. They specify the inter-
actions among the agents. These interactions will be represented later on in terms of the
Laplacian matrix L of the communication graph as indicated in Fig. 3.1.

These assumptions simplify the general block diagram in Fig. 1.10 on p. 15 of multi-agent
systems to the diagram in Fig. 3.1. Since the consensus value x̄ is unknown in advance, the
controllers (3.3) cannot react on the control error x̄ − xi(t) and the well-known theory of
tracking control is not applicable to solve the consensus problem.

All agents together represent a set of N integrators

P : ẋ(t) = u(t), x(0) = x0 (3.4)

with the state x ∈ R
N and the input vector u ∈ R

N . The networked controller is a proportional
controller with N inputs and N outputs

C : u(t) = −Lx(t), (3.5)

where the controller matrix L turns out to be the Laplacian matrix of the communication net-
work defined in Section 2.2.5. The i-th row of eqn. (3.5) reads as

Ci : ui(t) = −
N∑

j=1

lijxj(t), (3.6)

which is an alternative representation of the consensus protocol (3.2), in which the elements of
the Laplacian matrix L appear rather than the elements of the adjacency matrix AG .
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The overall system (3.4), (3.5) is a linear dynamical system Σ of N–th order with the state-
space representation

Overall system Σ : ẋ(t) = −Lx(t), x(0) = x0 (3.7)

and the block diagram of Fig. 3.1. This equation is said to represent a consensus system, a
consensus network, the consensus dynamics or the Laplacian flow.

Example 3.1 Consensus problem

Consider the consensus problem for a system with the communication graph
−→G shown in Fig. 3.2. Since

the agent P1 gets communicated only the state x3(t) of the agent P3, its input is determined according
to eqn. (3.2) as

u1(t) = −a13(x1(t)− x3(t)).

Similarly, agent P3 has the input

u3(t) = −a32(x3(t)− x2(t)).

Agent P2 knows the states of the two other agents, its input is determined as the weighted sum of the
state differences

u2(t) = −a21(x2(t)− x1(t))− a23(x2(t)− x3(t)).

Fig. 3.2: Communication graph considered in Example 3.1

The re-formulation of the consensus protocol as
⎛

⎝

u1(t)
u2(t)
u3(t)

⎞

⎠ = −

⎛

⎝

a13x1(t)− a13x3(t))
(a21 + a23)x2(t)− a21x1(t)− a23x3(t)

a32x3(t)− a32x2(t)

⎞

⎠

shows that indeed the Laplacian matrix

L =

⎛

⎝

a13 0 −a13

−a21 a21 + a23 −a23

0 −a32 a32

⎞

⎠

appears in the representation (3.6) of the consensus protocol and in the overall system (3.7):

Σ :

⎛

⎝

ẋ1(t)
ẋ2(t)
ẋ3(t)

⎞

⎠ = −

⎛

⎝

a13 0 −a13

−a21 a21 + a23 −a23

0 −a32 a32

⎞

⎠

⎛

⎝

x1(t)
x2(t)
x3(t)

⎞

⎠ . ✷
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The consensus of a multi-agent system is defined as follows:

Definition 3.1 (Consensus)

The system (3.7) is said to reach a consensus if for all initial states xi0, (i = 1, 2, ..., N) the

following relation holds for some scalar x̄:

lim
t→∞

x(t) = x̄11 . (3.8)

Later on, the consensus value x̄ turns out to depend upon the initial states of the agents and upon
the communication structure L of the networked controller. The main problem to be solved now
is to elaborate conditions on the communication network so that a consensus is reached.

There are several reasons why the consensus problem has attracted a lot of attention:

• The consensus problem concerns a direct relation between the structural properties descri-
bed by the graph Laplacian L and the behaviour of a networked dynamical system. Equati-
on (3.7) shows that the graph matrix L appears in the model of a dynamical system. Hence,
the consensus problem brings together graph-theoretical and systems-theoretical properties
and shows how the collective dynamics of the agents Pi within the overall system Σ depend
upon the network structure L.

• The consensus problem appears as a simplified version of several practical problems, in
particular as a basic problem of cooperative control of physically coupled or uncoupled
subsystems. For example, formation control of robots can be treated as a consensus pro-
blem, in which the robots should assume prescribed relative positions (Section 3.3.6).

• The consensus problem has its origin in the fields of distributed computing and management
science, where the agents (processors, team members) should reach an agreement with re-
spect to an important quantity. Several iterative algorithms can be posed as the discrete-time
version of the system Σ, which will be introduced in Section 3.4. A consensus should be re-
ached by iterating the two-step procedure of first exchanging information among the agents
and second determining the average of the current local information.

The consensus protocol (3.3) can be interpreted as a simple form of a cooperative controller,
because its implementation is only possible if all agents are willing to cooperate, that is, to send
their state information to their neighbours and to change their own state in dependence upon
the information received from other agents. In this way, they reach the common state x̄11 .

This chapter focusses on the following question:

Under what conditions on the network structure represented by the Laplacian matrix L does
the networked system Σ with arbitrary initial state x0 reach a consensus?

Furthermore, it shows how the consensus value x̄ depends upon the network structure and the
initial states of the agents and evaluates how quickly the agents approach this value. As the
graph under consideration can be weighted, the Laplacian matrix L does not only say which



3.2 Continuous-time consensus 67

agents are connected with which other agents but it also provides the weighting factors lij for
all existing edges (j → i). Hence, the consensus problem can be treated simultaneously for
directed, undirected and weighted graphs.

3.2 Continuous-time consensus

3.2.1 Basic convergence results

This section investigates under what conditions all agents within the networked system Σ reach
asymptotically a common consensus value x̄. In the model (3.7) of the overall system Σ, L is
the Laplacian matrix of a directed graph

−→
G that represents the communication structure of the

controller C. This section derives conditions on the graph
−→
G that ensure that the system Σ

reaches a consensus according to Definition 3.1.

Preliminary analysis of the system Σ. If the matrix L had only eigenvalues with positive
real part, the solution to the convergence problem would be very easy, because in this ficticious
situation the state x̄ = 0 would be the only equilibrium state of an asymptotically stable sys-
tem (3.7). However, the matrix L has at least one vanishing eigenvalue λ1, it may have multiple
vanishing eigenvalues, and in both cases the system Σ has an infinite number of equilibrium
points. Therefore, the consensus problem cannot be solved by applying methods for proving
the asymptotic stability of the linear system (3.7), but it requires to extend the stability analysis
towards systems that are stable, but not asymptotically stable.

Since the matrix L has a vanishing eigenvalue with a right eigenvector 11 , all x ∈ R
N with

x1 = x2 = ... = xN = x̄ ∈ R (3.9)

are an equilibrium state of Σ, because for these states eqns. (3.7) and (3.9) lead to ẋ = 0. As
in all of these states a consensus is reached, the set of all of them is called the agreement set or
the set of the collective decision:

Agreement set: A = {x̄11 | x̄ ∈ R}. (3.10)

Consensus condition. The following theorem states the basic convergence result of the con-
sensus problem.

Theorem 3.1 (Necessary and sufficient condition for continuous-time consensus)

Consider a multi-agent system Σ described by eqn. (3.7). The structure of the system is

represented by the weighted directed graph
−→
G with the Laplacian matrix L. For all initial

states xi0, (i = 1, 2, ..., N) the system Σ reaches a consensus according to eqn. (3.8) for

some consensus value x̄ ∈ R if and only if the graph
−→
G has a spanning tree.

That is, a consensus is reached whenever the communication graph has an agent from which
there exist paths to all other agents. Note that the graph

−→
G can have arbitrary nonnegative
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weights. For unweighted graphs all weights are set to 1. For undirected graphs the Laplacian
matrix is symmetric.

There are several proofs of this theorem all of which are based on Theorem 2.1, which
ensures that the second smallest eigenvalue λ2 of the Laplacian matrix L is positive if and only
if the corresponding graph

−→
G has a spanning tree. The main arguments of these proofs are listed

here because they help to understand the consensus problem:

• If the vanishing eigenvalue λ1 = 0 of the matrix L is single, the agreement set A is the
one-dimensional eigenspace spanned by the right eigenvector 11 that belongs to λ1. Hence,
every equilibrium state of the system belongs to A and ensures consensus.

• The eigenvalue λ1 = 0 is single only if the graph
−→
G has a spanning tree. Hence, con-

sensus can occur only in networked systems that possess such a tree. This requirement is
intuitively clear, because a tree is necessary for the existence of an agent the state of which
influences, directly or indirectly, the state of all other agents. If the system does not have a
spanning tree, the graph consists of two or more subgraphs that have a spanning tree each.
Such systems have two or more agents without a path between them. Since they cannot com-
municate with each other they cannot agree about a consensus and no consensus is possible.

• The fact that the state x(t) of the system Σ reaches the agreement set A asymptotically can
be proved by using the Lyapunov function

v(x) = xT(t)x(t)

and by showing that the derivative v̇(t) = dV
dx

T
ẋ(t) along the trajectory of the system (3.7)

is negative as long as the system has not yet reached the set A.

The following proof decomposes the system Σ into an asymptotically stable part and a first-
order system, which describes the convergence into a consensus state.

Proof. The structure of the following proof is highlighted to make the main ideas applicable for the
more general problem of synchronisation considered in Section 4.3.

1. Representation of the consensus error. The state transformation
⎛

⎜
⎜
⎜
⎝

x1(t)
e2(t)

...
eN (t)

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

x̃

=

(

1 0
T

−11 I

)

︸ ︷︷ ︸

T
−1

⎛

⎜
⎜
⎜
⎝

x1(t)
x2(t)

...
xN (t)

⎞

⎟
⎟
⎟
⎠

with T =

(

1 0
T

11 I

)

(3.11)

that includes the (N − 1×N − 1)–unity matrix I is applied to the system (3.7) to get the new repre-
sentation

˙̃x(t) = −T
−1

LT x̃(t). (3.12)

The new state variables ei(t) = xi(t)− x1(t), (i = 2, 3, ..., N) represent the distance of the states of
the agents P2,..., PN from the state of the agent P1. If the matrix L is decomposed as
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L =

(

l11 lT12

l21 L22

)

,

where L22 is an (N − 1×N − 1)–matrix, l21 and l12 are (N − 1)–vectors and l11 is a scalar, one gets

T
−1

LT =

(

0 lT12

0 L̃22

)

with L̃22 = L22 − 11 l
T
12 (3.13)

after having used the property (2.29) of L.

2. Properties of the matrix L̃22. Due to the structure of the transformed matrix (3.13), the eigenva-
lues λ1{L̃22},..., λN−1{L̃22} of L̃22 coincide with the eigenvalues λ2{L},..., λN{L} of L:

λi{L̃22} = λi+1{L}, i = 1, 2, ..., N − 1. (3.14)

Hence, all eigenvalues of L̃22 have positive real part if and only if the graph
−→G has a spanning tree.

3. Convergence analysis. The overall system Σ in eqn. (3.12) can be decomposed into the first-order
subsystem

ẋ1(t) = −l
T
12

⎛

⎜
⎜
⎜
⎝

e2(t)
e3(t)

...
eN(t)

⎞

⎟
⎟
⎟
⎠

, x1(0) = x10

and the remaining N − 1 subsystems
⎛

⎜
⎜
⎜
⎝

ė2(t)
ė3(t)

...
ėN(t)

⎞

⎟
⎟
⎟
⎠

= −L̃22

⎛

⎜
⎜
⎜
⎝

e2(t)
e3(t)

...
eN(t)

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

e2(0)
e3(0)

...
eN (0)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

x20 − x10

x30 − x10

...
xN0 − x10

⎞

⎟
⎟
⎟
⎠

. (3.15)

If the graph
−→G has a spanning tree, the eigenvalues λ2,..., λN of L have positive real part and

lim
t→∞

∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎝

e2(t)
e3(t)

...
eN(t)

⎞

⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥

= 0 (3.16)

holds for all initial states x0 of the overall system and implies

lim
t→∞

|ẋ1(t)| = 0

and
lim
t→∞

x1(t) = x̄

for some scalar x̄. After the back-transformation

x(t) =

(

1 0
T

11 I

)

︸ ︷︷ ︸

T

⎛

⎜
⎜
⎜
⎝

x1(t)
e2(t)

...
eN (t)

⎞

⎟
⎟
⎟
⎠

= x1(t)11 +

⎛

⎜
⎜
⎜
⎝

0
e2(t)

...
eN (t)

⎞

⎟
⎟
⎟
⎠
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the appearance of a consensus is proved:

lim
t→∞

x(t) = x̄11 .

On the other hand, if there does not exist any spanning tree in
−→G , λ2 = 0 holds, which means that

eqn. (3.16) is violated for at least one initial state of the system Σ. Then for this initial state, the back-
transformation shows that no consensus is reached, which proves the necessity of the spanning tree for
a consensus. ✷

For later investigations it is important to see that the matrix L̃22 defined in eqn. (3.13) can be
obtained from the Laplacian matrix L as

L̃22 = L22 − 11 lT12 (3.17)

= (−11N−1 IN−1)
︸ ︷︷ ︸

U

L

(

0
T
N−1

IN−1

)

︸ ︷︷ ︸

W

with the (N−1×N)–matrix U and the (N ×N−1)–matrix W that have the property

UW = IN−1.

The matrices U and W are independent of L. L̃22 is called the reduced Laplacian matrix.

Fig. 3.3: Structure and consensus behaviour of the systems considered in
Example 3.2

Example 3.2 Consensus in networked systems

The two systems with five agents and the structure of Fig. 3.3 (left) possess a spanning tree. Hence, their
agents reach a consensus.

The right part of Fig. 3.3 shows the behaviour of both systems for the same initial state. In the
path graph used in the upper part of the figure, the agent P1 determines the consensus value: x̄ = x10
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and the other agents approach this value in approx. 6 time units. As the lower part of the figure shows,
the consensus is reached faster in the ring graph and the consensus value x̄ = 1 is the average of the
initial states of all agents, because in the ring each agent sends information about its state, directly or
indirectly, to all other agents. ✷

3.2.2 Consensus value

This section answers the question how the consensus value x̄ depends upon the initial state x0 of
the overall system and upon the communication structure described by the Laplacian matrix L.
As a preliminary result, an important property Σ is described by the following lemma:

Lemma 3.1 (Invariant property of consensus systems)

The scalar

y = wTx(t)

is invariant under the movement of the system Σ described by eqn. (3.7), where wT ≥ 0
T is a

left eigenvector of the Laplacian matrix L for the vanishing eigenvalue λ1 = 0.

That is, the scalar y remains constant along the trajectory x(t) of the system and, in particular,
equals wTx0:

y = wTx(t) = wTx0, t ≥ 0. (3.18)

This property is valid even if the system Σ does not satisfy the consensus condition stated in
Theorem 3.1.

Proof of Lemma 3.1. Assume that the signal y(t) = wTx(t) is time-dependent with the derivative

ẏ(t) = w
T
ẋ(t)

= −w
T
Lx(t).

Since wT is an eigenvector for the vanishing eigenvalue λ1, one gets

ẏ(t) = −0
T
x(t) = 0,

which proves the lemma. ✷

The lemma can be used to determine the consensus value x̄. Under the condition of Theorem 3.1
the system Σ asymptotically reaches a consensus

x(t)
t→∞
−→ x̄11 .

As y is invariant along the trajectory x(t), the relation

wTx0 = wTx(t)
t→∞
−→ wTx̄11

and, hence,
wTx0 = x̄wT

11


