Errata

The notion of a primitive matrix has been misinterpreted in Theorem 3.3 and in the appendix on matrices. The correct passages of the text are attached.

Theorem 3.3 (Necessary and sufficient condition for discrete-time consensus)

Consider a multi-agent system $\bar{\Sigma}$ described by eqn. (3.52) with a row-stochastic matrix \boldsymbol{P}. The overall system $\bar{\Sigma}$ reaches a consensus as in eqn. (3.54) for some consensus value $\bar{x} \in \mathbb{R}$ if and only if the matrix \boldsymbol{P} has only the eigenvalue $\lambda_{1}=1$ with modulus 1 :

$$
\left|\lambda_{i}\right|<1, \quad i=2,3, \ldots, N .
$$

In particular, if \boldsymbol{P} is irreducible and has positive diagonal elements

$$
\begin{equation*}
p_{i i}>0, \quad i=1,2, \ldots, N \tag{3.56}
\end{equation*}
$$

it is primitive and satisfies the condition of the theorem (cf. Lemma A2.4). Then the induced graph $\overrightarrow{\mathcal{G}}(\boldsymbol{P})$ has self-loops at any vertex, which is a reasonable communication structure of the agents, because $p_{i i}>0$ means that the state x_{i} of the i-th agent at time $k+1$ depends upon this state at time k. Hence, the iteration (3.53) improves the state x_{i} while using its earlier values. For $p_{i i}=0, x_{i}(k+1)$ were a linear combination only of the neighbouring states and the old value $x_{i}(k)$ were forgotten.

Proof of Theorem 3.3. The theorem can be proved similarly to Theorem 3.1 with the notation introduced there. If the state transformation (3.11) in its discrete-time version

$$
\underbrace{\left(\begin{array}{c}
x_{1}(k) \\
e_{2}(k) \\
\vdots \\
e_{N}(k)
\end{array}\right)}_{\tilde{\boldsymbol{x}}}=\underbrace{\left(\begin{array}{c:c}
1 & \mathbf{0}^{\mathrm{T}} \\
\hdashline-\boldsymbol{1} & \boldsymbol{I}
\end{array}\right)}_{\boldsymbol{T}^{-1}}\left(\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\vdots \\
x_{N}(k)
\end{array}\right)
$$

is applied to the system (3.52) the new representation

$$
\begin{equation*}
\tilde{\boldsymbol{x}}(k+1)=\boldsymbol{T}^{-1} \boldsymbol{P} \boldsymbol{T} \tilde{\boldsymbol{x}}(k) \tag{3.57}
\end{equation*}
$$

includes the transformed matrix \boldsymbol{P}, which, by means of eqn. (3.55), is decomposed as

$$
\boldsymbol{T}^{-1} \boldsymbol{P} \boldsymbol{T}=\left(\begin{array}{c:c}
1 & \boldsymbol{p}_{12}^{\mathrm{T}} \tag{3.58}\\
\hdashline \mathbf{0} & \tilde{\boldsymbol{P}}_{22}
\end{array}\right) \quad \text { with } \quad \tilde{\boldsymbol{P}}_{22}=\boldsymbol{P}_{22}-\boldsymbol{1} \boldsymbol{p}_{12}^{\mathrm{T}}
$$

The eigenvalues of $\tilde{\boldsymbol{P}}_{22}$ coincide with the eigenvalues $\lambda_{2}, \ldots, \lambda_{N}$ of \boldsymbol{P}, but they do not include $\lambda_{1}=1$. For the state differences $e_{i}(k)=x_{i}(k)-x_{1}(k),(i=2,3, \ldots, N)$ the model (3.57) yields

$$
\left(\begin{array}{c}
e_{2}(k+1) \tag{3.59}\\
e_{3}(k+1) \\
\vdots \\
e_{N}(k+1)
\end{array}\right)=\tilde{\boldsymbol{P}}_{22}\left(\begin{array}{c}
e_{2}(k) \\
e_{3}(k) \\
\vdots \\
e_{N}(k)
\end{array}\right), \quad\left(\begin{array}{c}
e_{2}(0) \\
e_{3}(0) \\
\vdots \\
e_{N}(0)
\end{array}\right)=\left(\begin{array}{c}
x_{20}-x_{10} \\
x_{30}-x_{10} \\
\vdots \\
x_{N 0}-x_{10}
\end{array}\right)
$$

All differences $e_{i}(k)$ vanish asymptotically for all initial states $e_{i}(0)$ if and only if all eigenvalues of $\tilde{\boldsymbol{P}}_{22}$ have modulus less than one as required by the theorem. Hence, all agent states x_{i} become equal:

$$
e_{i}(k) \xrightarrow{k \rightarrow \infty} 0 \Rightarrow\left|x_{i}(k)-x_{1}(k)\right| \xrightarrow{k \rightarrow \infty} 0, \quad i=2,3, \ldots, N
$$

and a consensus is reached as stated in eqn. (3.54).

- the spectral radius is positive: $\lambda_{\mathrm{P}}>0$,
- there exists a positive vector $\boldsymbol{v}>\mathbf{0}$ such that $\boldsymbol{A} \boldsymbol{v}=\lambda_{\mathrm{P}} \boldsymbol{v}$ holds,
$-\quad \lambda=\lambda_{\mathrm{P}}$ is a simple eigenvalue and for all other eigenvalues the inequality $|\lambda| \leq \lambda_{\mathrm{P}}$ holds.
- If \boldsymbol{A} is nonnegative
- the spectral radius is nonnegative: $\lambda_{\mathrm{P}} \geq 0$,
$-\quad$ there exists a nonnegative vector $\boldsymbol{v} \geq \mathbf{0}, \boldsymbol{v} \neq \mathbf{0}$ such that $\boldsymbol{A} \boldsymbol{v}=\lambda_{\mathrm{P}} \boldsymbol{v}$ holds.

Hence, for positive and for irreducible nonnegative matrices the spectral radius represents a unique real eigenvalue of \boldsymbol{A}, which has the maximum modulus. The main difference between positive and general nonnegative matrices lies in the property of the corresponding eigenvector \boldsymbol{v}, which is positive or nonnegative, respectively.

A nonnegative matrix is called primitive if there exists an integer m such that $\boldsymbol{A}^{m}>0$ holds. Primitive matrices have a single eigenvalue, which is equal to the Perron root, and all other eigenvalues have a smaller magnitude.

A necessary condition for $\boldsymbol{A} \geq 0$ to be primitive is that \boldsymbol{A} has to be irreducible, which is equivalent to the requirement that the directed graph $\overrightarrow{\mathcal{G}}(\boldsymbol{A})$ is strongly connected. However, this condition is only necessary, but not sufficient for \boldsymbol{A} to be primitive. If, in addition to the strong connectedness of the graph all diagonal elements $a_{i i},(i=1,2, \ldots, n)$ of \boldsymbol{A} are positive, then \boldsymbol{A} is primitive.

In summary, for nonnegative $(n \times n)$-matrices the following implications hold:

$$
\begin{gathered}
\boldsymbol{A} \text { is positive } \\
\boldsymbol{A}>0
\end{gathered} \quad \Longrightarrow \quad \begin{aligned}
& \boldsymbol{A} \text { is primitive } \\
& \exists k: \boldsymbol{A}^{k}>0
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& \boldsymbol{A} \text { is irreducible } \\
& \sum_{k=0}^{n-1} \boldsymbol{A}^{k}>0 .
\end{aligned}
$$

A2.4.8 Stochastic matrices

An $(n \times n)$-matrix \boldsymbol{P} is called stochastic, if it is nonnegative and all row sums equal one:

$$
\begin{equation*}
\boldsymbol{P} \geq 0, \quad \boldsymbol{P} \mathbb{1}=\mathbb{1} \tag{A2.12}
\end{equation*}
$$

Such matrices are also said to be a row-stochastic or to be a probability matrix or a Markov matrix. A doubly-stochastic matrix is a nonnegative matrix with both row sum and column sum equal to one.

Stochastic matrices have an eigenvalue $\lambda_{1}=1$ and eqn. (A2.12) yields the eigenvector $\boldsymbol{v}=\mathbb{1}$ belonging to λ_{1}. If the matrix is doubly-stochastic, $\boldsymbol{w}^{\mathrm{T}}=\boldsymbol{1}^{\mathrm{T}}$ is a left eigenvector for the eigenvalue λ_{1}. More generally, Gershgorin's theorem (Lemma A2.2) implies that all eigenvalues lie in the unit circle:

$$
\left|\lambda_{i}\{\boldsymbol{P}\}\right| \leq 1, \quad i=1,2, \ldots, n
$$

In order to ensure the convergence of the consensus problem (3.52), the eigenvalue λ_{1} of the matrix \boldsymbol{P} has to be the only eigenvalue with magnitude $\left|\lambda_{i}\right|=1$. A stochastic matrix with this property is called ergodic.

Lemma A2.4 (Primitive stochastic matrices)

Any irreducible stochastic matrix \boldsymbol{P} with positive diagonal elements is primitive.

Products of stochastic matrices are stochastic. The limit

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \boldsymbol{P}^{k}=\boldsymbol{P}_{\infty} \tag{A2.13}
\end{equation*}
$$

exists if \boldsymbol{P} is primitive. The matrix \boldsymbol{P}_{∞} consists of n identical rows $\overline{\boldsymbol{p}}^{\mathrm{T}}$:

$$
\boldsymbol{P}_{\infty}=\left(\begin{array}{c}
\overline{\boldsymbol{p}}^{\mathrm{T}} \\
\overline{\boldsymbol{p}}^{\mathrm{T}} \\
\vdots \\
\overline{\boldsymbol{p}}^{\mathrm{T}}
\end{array}\right)
$$

Hence, a consensus system $\boldsymbol{x}(k+1)=\boldsymbol{P} \boldsymbol{x}(k)$ converges to the consensus state $\lim _{k \rightarrow \infty} \boldsymbol{x}(k)=\overline{\boldsymbol{p}}^{\mathrm{T}} \boldsymbol{x}_{0}$.

A2.5 Stability analysis of complex-valued matrices

A complex $(n \times n)$-matrix \boldsymbol{C} is called Hurwitz if all eigenvalues have negative real part:

$$
\operatorname{Re}\left(\lambda_{i}\{\boldsymbol{C}\}\right)<0, \quad i=1,2, \ldots, n
$$

For the stability analysis of complex matrices consider the characteristic polynomial

$$
p(\lambda)=\operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{C})=\sum_{i=0}^{n} a_{i} \lambda^{i}
$$

with the complex coefficients $a_{i}=p_{i}+\mathrm{j} q_{i},(i=0,1, \ldots, n)$. a_{i}^{*} denotes the conjugate complex of a_{i}. The following theorem is a generalisation of the well-known Hurwitz criterion:

Lemma A2.5 (Bilharz criterion) [42]
The roots $\lambda_{i},(i=1,2, \ldots, n)$ of the polynomial $p(\lambda)$ satisfy the condition $\operatorname{Re}\left(\lambda_{i}\right)<0$ if and only if all the principal minors of even order of the $(2 n \times 2 n)$-matrix

$$
\boldsymbol{H}=\left(\begin{array}{cccccc}
a_{0} & -\mathrm{j} a_{0}^{*} & 0 & 0 & 0 & \cdots \\
-\mathrm{j} a_{1} & a_{1}^{*} & a_{0} & -\mathrm{j} a_{0}^{*} & 0 & \cdots \\
-a_{2} & \mathrm{j} a_{2}^{*} & -\mathrm{j} a_{1} & a_{1}^{*} & a_{0} & \cdots \\
\mathrm{j} a_{3} & -a_{3}^{*} & -a_{2} & \mathrm{j} a_{2}^{*} & -\mathrm{j} a_{1} & \cdots \\
a_{4} & -\mathrm{j} a_{4}^{*} & \mathrm{j} a_{3} & -\mathrm{j} a_{3}^{*} & -a_{2} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right)
$$

are positive:

$$
D_{i}>0, \quad i=2,4, \ldots, 2 n
$$

In the matrix \boldsymbol{H}, elements a_{i} with $i>n$ are set to zero.

