J. LUNZE: Networked Control of Multi-Agent Systems, Edition MoRa 2022 Figures that have been produced with MATLAB

28. Dezember 2021

The following table shows figures of the book, which have been produced with MATLAB (Version 2021a). The figure names have been derived from the name of the corresponding MATLAB script.

Figure	Caption	File name
3.3	Structure and consensus behaviour of the systems considered in Example 3.2	ConsensusDemo1.eps
3.6	Bounds for the trajectories of the systems with the same structure as in Fig. 3.3 (II)	ConsensusDemo2.eps
3.10	Consensus dynamics of the system $\overline{\Sigma}$ with complete couplings for $N = 40$ (top) and $N = 5$ (bottom)	ConsensusDemo3.eps
3.12	Behaviour of the systems with two leaders	ConsensusDemo11.eps
3.17	Formation control	ConsensusDemo12.eps
3.19	Results of the distributed estimation algorithm	ConsensusDemo32.eps
3.21	Discrete-time consensus	ConsensusDemo17.eps
3.24	Behaviour of the switching system with strongly connected, weight- balanced graphs	ConsensusDemo4.eps
3.25	Consensus behaviour of the same system with the same initial state but different switching functions (I)	ConsensusDemo5.eps
3.25	Consensus behaviour of the same system with the same initial state but different switching functions (II)	ConsensusDemo6.eps
3.27	Behaviour of the network with changing number of agents	ConsensusDemo10.eps
3.29	Consensus behaviour of the switching system	ConsensusDemo20.eps
4.2	Trajectories of synchronised oscillators	SyncDemo18.eps
4.6	Root locus of the agent	SyncDemo3.eps
4.7	Synchronisation behaviour of the harmonic oscillators	Syncdemo4.eps
4.8	Trajectories of two oscillators with different coupling structure \dots	SyncDemo5.eps
4.13	Behaviour of the vehicle platoon $(N = 10)$	SyncDemo13.eps
4.25	Behaviour of three coupled oscillators with different coupling strength	LCNetworkDemo3.eps

4.26	Behaviour of an oscillator network with ten nodes	LCNetworkDemo5.eps
4.27	Eigenvalues of the oscillator networks with path structure	LCNetworkDemo6.eps
4.27	Eigenvalues of the oscillator networks with ring structure	LCNetworkDemo7.eps
4.39	Root loci of the closed-loop agent and the extended closed-loop agent	SyncIMPDemo10.eps
4.43	Command step response of the vehicle P_i with the velocity control loop with different masses	SyncIMPDemo12.eps
4.45	Behaviour of the platoon with neighbouring couplings	SyncIMPDemo15.eps
4.46	Robust synchronisation of three oscillators with increased coupling gain	SyncIMPDemo17.eps
4.47	Two oscillators with different eigenfrequencies $\omega_1 = 3$ and $\omega_2 = 2.5$ do not synchronise but constitute an asymptotically stable system	Syncdemo21.eps
4.48	Practical synchronisation of two coupled motors: The outputs follow the same sinusoidal trajectory with a small phase shift	SyncMotor6.eps
4.49	Trajectories of the three non-uniform oscillators and Lyapunov func- tion	LCNetworkDemo9.eps
4.53	Synchronising behaviour of the two motors	SyncMotor4.eps
4.56	Behaviour of a single Kuramoto oscillator with $\omega_i = 1 \frac{\text{rad}}{\text{s}}, \ \theta_{i0} = 2 \text{ rad}$ and $u_i(t) = 0$	SyncKuramotoDemo1.eps
4.57	Synchronisation of ten uniform Kuramoto oscillators with complete linear couplings ($\omega_i = 1 \frac{\text{rad}}{\text{s}}, k = 0.03$)	SyncKuramotoDemo2.eps
4.58	Arrow representation of the synchronisation behaviour of Fig. 4.57	SyncKuramotoDemo18.eps
4.59	Phase-locking behaviour of ten non-uniform Kuramoto oscillators with complete linear couplings $(k = 0.1)$	SyncKuramotoDemo3.eps
4.59	Phase-locking behaviour of ten non-uniform Kuramoto oscillators with complete linear couplings $(k = 0.1)$	SyncKuramotoDemo19.eps
4.63	Asymptotic synchronisation of non-uniform Kuramoto oscillators $% \left({{\left[{{\left[{{\left[{\left[{\left[{\left[{\left[{\left[{\left[$	SyncKuramotoDemo5.eps
4.64	Behaviour of uniform Kuramoto oscillators with non-synchronisable phases	SyncKuramotoDemo8.eps
4.65	Behaviour of ten nonlinearly coupled non-uniform Kuramoto oscilla- tors for two coupling strengths	SyncKuramotoDemo7.eps
4.66	Evaluation of the synchrony of the network behaviours shown in Figs. 4.63 and 4.65	SyncKuramotoDemo9.eps
4.67	Relation between the coupling strength k and the order parameter r_{∞} , which has been numerically determined for non-uniform oscillators with natural frequencies $\omega_i \in [2, 4] \frac{\text{rad}}{\text{s}}$ and all-to-all couplings	SyncKuramotoDemo10.eps
4.69	Equilibrium states	SyncKuramotoDemo12.eps

4.69	Synchronisation behaviour of the uniform oscillators with $\theta_{10} = 0$	SyncKuramotoDemo11.eps
4.70	Phase-locking of three non-uniform Kuramoto oscillators with initial phases (4.232)	SyncKuramotoDemo13.eps
4.71	Synchronisation of ten extended oscillators with nonlinear all-to-all couplings and coupling strength $k = 1.5$	SyncKuramotoDemo14.eps
4.71	Synchronisation of ten extended oscillators with nonlinear all-to-all couplings and coupling strength $k=0.2$	SyncKuramotoDemo15.eps
4.72	Synchronisation of ten Kuramoto oscillators with nonlinear star couplings	SyncKuramotoDemo16.eps
4.73	Outputs of four oscillators (detail of Fig. 4.72)	SyncKuramotoDemo17.eps
5.4	Behaviour of the fifth agent	DelayDemo7.eps
5.14	Root locus	DelayDemo3.eps
5.14	Step response of the controlled robot	DelayDemo4.eps
5.15	Behaviour of the five robots with neighbouring couplings (top) and with the first communication graph of Fig. 5.12	DelayDemo5.eps
5.15	Behaviour of the five robots with two communication graphs of Fig. 5.12	DelayDemo6.eps
5.20	Vehicle outputs $y_1(t),, y_4(t)$ for sinusoidal input (top) and for step input (bottom)	PlatoonDemo1.eps
5.21	Details of the step responses $y_i(t)$ of $N = 50$ vehicles	PlatoonDemo2.eps
5.22	Velocities and vehicle distances in a braking manoeuvre	PlatoonDemo3.eps
5.22	Vehicle positions in a braking manoeuvre	PlatoonDemo15.eps
5.23	Velocities and vehicle distances for changing command signal $v_{ref}(t)$ of the leader (dashed line)	PlatoonDemo4.eps
5.28	Platoon behaviour with ACC (velocities $v_0,, v_5$; distances $d_1,, d_5$)	PlatoonDemo11.eps
5.30	Velocities and distances of the vehicles in a platoon with CACC	PlatoonDemo10.eps
5.30	Positions of the vehicles in a platoon with CACC	PlatoonDemo12.eps
5.31	Impulse responses belonging to the transfer functions (5.112), $(i = 2,, 5)$	PlatoonDemo14.eps
5.32	Platoon behaviour with CACC	PlatoonDemo18.eps
5.32	Platoon behaviour with ACC	PlatoonDemo19.eps
5.33	Comparison of the velocity $v_2(t)$ of the second follower (third curve from above) for CACC (top) and ACC (bottom)	PlatoonDemo20.eps

5.35	Impulse response and vehicle distance in a braking manoeuvre \dots	PlatoonDemo5.eps
5.37	Impulse responses of the controlled vehicles (\bar{g} —, \bar{f})	PlatoonDemo6.eps
5.38	Impulse responses of the controlled vehicle for proportional distance controller	PlatoonDemo7.eps
5.39	Vehicle distances in a platoon with distance controllers	PlatoonDemo24.eps
6.3	Characteristic path length of the undirected path graph	RegularGraphDemo3.eps
6.7	Relative frequencies of the vertex degrees of the graph of Fig. 6.6 and Poisson degree distribution of a random graph	RandomGraphDemo10.eps
6.8	Comparison of an exponential probability distribution -o-o- with a power-law probability distribution -o-o- \cdots	ScaleFreeDemo1.eps
6.12	Characteristic number \bar{s} of connected components and probability for the graph to be a single connected component	RandomGraphDemo1.eps
6.14	Disturbance behaviour of the electrical power network	RandUQNet1.eps
6.15	Degree distribution of a random graph with $N = 51$ vertices and connection probability $p = 0.2$	RandomGraphDemo2.eps
6.17	Diameter of random graphs	RandomGraphDemo11.eps
6.18	Characteristic path length of random graphs determined numerically for 600 realisations	RandomGraphDemo3.eps
6.23	Characteristic path length and clustering coefficient of small-world networks in dependence upon the re-connection probability $p_{\rm r}$	SmallWorldDemo1.eps
6.26	Degree distribution of a scale-free network (only non-zero values are shown by the circles)	ScaleFreeDemo5.eps
7.2	Random sequences considered in Example 7.2	ConvergenceDemo1.eps
7.4	Probability distribution (7.12), outcome $\omega(k)$ of the experiment and the realisation of the sequence $\{X(k,\omega)\}$	ConvergenceDemo7.eps
7.8	Realisation of the random sequence (7.20)	ConvergenceDemo2.eps
7.12	Martingale	ConvergenceDemo8.eps
7.12	Supermartingale	ConvergenceDemo9.eps
7.15	Pendulum behaviour for the networked controller $()$ compared with the behaviour for the controller with permanent data transfer ()	NetwPendulum1.eps
7.16	Details of Fig. 7.15	NetwPendulum2.eps
7.17	Lyapunov function of the inverted pendulum	NetwPendulum3.eps
7.19	Random agreement	RandomNetDemo6.eps

7.21	Behaviour of a system with $N=12$ agents and Erdös-Rényi communication graph with probability $p=0.08$	RandomNetDemo1.eps
7.23	Number of edges in the communication graph	RandomNetDemo2.eps
8.5	Interval for the upper bound \bar{v}	SelfOrgRobotDemo3.eps
8.6	Performance of 21 robots with path connection (above) and with the effective communication graph (below)	SelfOrgRobotDemo4.eps
8.7	Delay of the robot formation in two experiments with the same connection probability $p = 0.1$ (I)	SelfOrgRobotDemo5.eps
8.7	Delay of the robot formation in two experiments with the same connection probability $p = 0.1$ (II)	SelfOrgRobotDemo6.eps
8.9	Probability of the edge $(i-1 \rightarrow i)$ to be an edge of the effective communication graph	SelfOrgRobotDemo7.eps
8.10	Expected path length \boldsymbol{v}_i for various sizes M of the neighbourhood	SelfOrgRobotDemo8.eps
8.11	$\overline{\Delta v}$ in dependence upon the connection probability $p \in \{0.03, 0.1, 0.4\}$ and the size M of the neighbourhood	SelfOrgRobotDemo9.eps
8.12	Behaviour of the networked robots with the basic communication structure (above) and with the effective communication structure (below) $(y_i(t)$ is drawn for $i = 1, 6, 11,, 26)$	SelfOrgRobotDemo11.eps
8.13	Performance index of the networked robots	SelfOrgRobotDemo10.eps
8.18	Expected path length v_k for agents with the rank $k = 1,, 30$ with probability $p \in \{0, 0.03, 0.06, 0.1, 0.17, 0.4\}$	SelfOrgRobotDemo12.eps
8.19	Bound \bar{v} of the expected path length	SelfOrgRobotDemo13.eps
8.21	Performance of the robots for two entry points of the leader marked by the filled dots (I)	SelfOrgRobotDemo14.eps
8.21	Performance of the robots for two entry points of the leader marked by the filled dots (II)	SelfOrgRobotDemo15.eps
8.27	Reconstruction of the disturbance effect on the output $y_3(t)$ of the third multirotor	SelfOrgCopterDemo1.eps
8.28	Effect of the disturbance $d_3(t)$ on the whole fleet with complete networked controller	SelfOrgCopterDemo3.eps
8.28	Effect of the disturbance $d_3(t)$ on the whole fleet with switching controller	SelfOrgCopterDemo4.eps
8.29	Effect of several disturbances on the multirotor fleet with non- switching controller	SelfOrgCopterDemo6.eps
8.29	Effect of several disturbances on the multirotor fleet with switching controller	SelfOrgCopterDemo5.eps
8.31	Three piecewise constant disturbances acting on neighbouring mul- tirotors	SelfOrgCopterDemo12.eps
9.8	Behaviour of the pendulum with continuous state-feedback control- ler	EventtriggeredPendulum1.eps

9.8	Behaviour of the pendulum with continuous state-feedback control- ler	EventtriggeredPendulum2.eps
9.9	Pendulum with event-triggered control	EventtriggeredPendulum3.eps
9.9	Pendulum with event-triggered control	EventtriggeredPendulum4.eps
9.10	Pendulum behaviour for continuous control () and for event-triggered control $(-)$	EventtriggeredPendulum5.eps
9.11	Disturbed pendulum: in the two time intervals marked an external disturbance occurs	EventtriggeredPendulum7.eps
9.11	Disturbed pendulum: in the two time intervals marked an external disturbance occurs	EventtriggeredPendulum8.eps
9.12	Behaviour of the event-triggered pendulum for a long time horizon	EventtriggeredPendulum11.eps
9.12	Behaviour of the event-triggered pendulum for a long time horizon	EventtriggeredPendulum12.eps
9.17	Event-triggered disturbance attenuation of the inverted pendulum without disturbance estimation	EventtriggeredPendulum9.eps
9.18	Pendulum behaviour with disturbance estimation	EventtriggeredPendulum10.eps
9.26	Behaviour of the overall system with event-triggered decentralised control	VERADemo11.eps
9.26	Behaviour of the overall system with event-triggered decentralised control	VERADemo12.eps
9.27	Coupling signals	VERADemo13.eps
9.28	Decentralised event-triggered control without approximate coupling signals (I)	VERADemo14.eps
9.28	Decentralised event-triggered control without approximate coupling signals (II)	VERADemo15.eps
9.33	Synchronisation by means of a continuous networked controller \dots	EventtriggeredSync2.eps
9.34	Synchronisation by means of an event-triggered networked control- ler	EventtriggeredSync3.eps
A1.2	Behaviour of the systems with the graphs shown in Fig. 3.7	ConsensusDemo9.eps
A1.3	Behaviour of the system with feedback gain $k = 1$ (top), $k = 2$ (middle) and $k = 5$ (bottom)	ConsensusDemo8.eps
A1.4	Behaviour of the three systems	ConsensusDemo7.eps
A1.6	Consensus behaviour for the path graph (top) and the graph with additional edges (bottom)	ConsensusDemo19.eps
A1.9	Nyquist plot of the transfer functions (A1.11)	ConsensusDemo30.eps
A1.10	Comparison of the consensus behaviour of the system without de- lay (top) and with delay $\tau = 0.3$ (bottom)	ConsensusDemo31.eps

A1.11	Rendezvous of six robots	ConsensusDemo28.eps
A1.12	Robot positions at three time points	ConsensusDemo29.eps
A1.13	Behaviour of the robots with ring communication structure	ConsensusDemo13.eps
A1.13	Behaviour of the robots with ring communication structure	ConsensusDemo14.eps
A1.14	Behaviour of the robots with neighbouring couplings	ConsensusDemo15.eps
A1.14	Behaviour of the robots with neighbouring couplings	ConsensusDemo16.eps
A1.15	Load-balancing of multiprocessors	ConsensusDemo18.eps
A1.16	Result of the gossiping algorithm	ConsensusDemo21.eps
A1.20	Nyquist plot for the oscillator example	SyncDemo14.eps
A1.20	Nyquist plot for the oscillator example	SyncDemo15.eps
A1.22	Nyquist plot without and with time delay	SyncDemo16.eps
A1.23	Behaviour of the completely coupled network (top) and a network with path graph (bottom) with $N=7$	SyncDemo10.eps
A1.24	Synchronisation behaviour of the platoon (top) and vehicle trajectories (bottom)	SyncDemo17.eps
A1.25	Platoon (top) and vehicle trajectories (bottom) for vehicles with ACC	SyncDemo23.eps
A1.26	Synchronisation behaviour of ten oscillators with complete coup- lings (top) and with path graph couplings (bottom)	SyncDemo8.eps
A1.27	Cluster synchronisation of seven harmonic oscillators	SyncDemo19.eps
A1.28	Root locus of the double integrator system	SyncDemo9.eps
A1.29	Behaviour of seven synchronised double-integrator agents	SyncDemo11.eps
A1.30	Synchronous behaviour of the spring-mass system	SyncSpringMass1.eps
A1.31	Oscillating movement of the spring-mass system $(-y_1, u_1, y_4, u_4)$	SyncSpringMass2.eps
A1.32	Root locus of the agent model	SyncSpringMass3.eps
A1.32	Root locus of the extended model (A1.30)	SyncSpringMass4.eps
A1.33	Synchronous behaviour of the spring-mass system	SyncSpringMass5.eps
A1.34	Trajectories and Lyapunov function of an oscillator network with two oscillators	LCNetworkDemo8.eps

A1.35	Root locus of the oscillator	SyncDemo1.eps
A1.36	Synchronisation behaviour for $k = 0.1$	SyncDemo2.eps
A1.37	Behaviour of a subsystem	LCLCNetworkDemo1.eps
A1.38	Root locus of the oscillator with respect to $(V_1(t), I_1(t))$	LCLCNetworkDemo2.eps
A1.38	Root locus of the oscillator with respect to $(V_2(t), I_2(t))$	LCLCNetworkDemo5.eps
A1.39	Behaviour of the two networks with $N = 10$ oscillators $\dots \dots \dots$	LCLCNetworkDemo4.eps
A1.40	Root loci of the extended closed-loop agent in two scales	SyncIMPDemo11.eps
A1.42	Behaviour of the coupled oscillators for $\delta = 3.817$	SyncDemo20.eps
A1.42	Change of the internal power for $\delta = 3.817$	SyncDemo22.eps
A1.43	Behaviour of five robots without networked controller	PhaseLockRobots1.eps
A1.43	Behaviour of five robots with networked controller	PhaseLockRobots2.eps
A1.44	Practical synchronisation of five robots	PhaseLockRobots3.eps
A1.45	Stability region of the extended Kuramoto oscillator networks \dots	SyncKuramotoDemo4.eps
A1.46	Step responses of lag systems (5.46) with $T_1 = 1$	DelayDemo1.eps
A1.47	Output $y(\Delta)$ for a second-order system (5.47) with $T_1 = 1$ and $T_2 \in [0, 5]$	DelayDemo2.eps
A1.50	Step responses of the ten controlled vehicles (velocities in $\frac{m}{s}$) for $T_i \in [0.2, 1.3]$	PlatoonExercise8.eps
A1.50	Step responses of the ten controlled vehicles (velocities in $\frac{m}{s}$) for $T_i \in [0.1, 0.5]$	PlatoonExercise11.eps
A1.51	Velocities in $\frac{m}{s}$ and reduced distances in meters of the vehicles $\$	PlatoonExercise9.eps
A1.51	Velocities in $\frac{m}{s}$ and reduced distances in meters of the vehicles $\ . \ .$	PlatoonExercise12.eps
A1.52	Position of the ten vehicles	PlatoonExercise10.eps
A1.54	Impulse responses of the controlled vehicle and vehicle distances for proportional distance and velocity controller	PlatoonDemo9.eps
A1.58	Impulse responses of the controlled vehicles	PlatoonExercise1.eps
A1.59	Behaviour of the string stable platoon with $N = 30$ vehicles \dots	PlatoonExercise4.eps
A1.59	Behaviour of the string stable platoon with $N = 30$ vehicles	PlatoonExercise5.eps

A1.60	Behaviour of the platoon with guaranteed collision avoidance \ldots	PlatoonExercise6.eps
A1.60	Behaviour of the platoon with guaranteed collision avoidance \ldots	PlatoonExercise7.eps
A1.61	Vehicle velocities and distances in the platoon with CACC (5.117)	PlatoonDemo17.eps
A1.63	Vehicle distances in the platoon with modified CACC	PlatoonDemo21.eps
A1.64	Collision avoidance test for the modified CACC $(i = 2,, 5)$	PlatoonDemo23.eps
A1.66	Equivalent resistance in dependence upon the probability p	RandUQNet2.eps
A1.67	Degree distribution of small-world networks	SmallWorldDemo5.eps
A1.67	Degree distribution of small-world networks	SmallWorldDemo6.eps
A1.67	Degree distribution of small-world networks	SmallWorldDemo7.eps
A1.67	Degree distribution of small-world networks	SmallWorldDemo8.eps
A1.68	Relative characteristic path length of a small-world network with	SmallWorldDemo9.eps
A1.69	Three parts of a convergent sequence	ConvergenceDemo6.eps
A1.70	Results of the distributed averaging algorithms for two different sequences of broadcast communications with the same initial state	RandomNetDemo4.eps
A1.70	Results of the distributed averaging algorithms for two different sequences of broadcast communications with the same initial state	RandomNetDemo5.eps
A1.71	Time-to-consensus in dependence upon the probability p of Erdös- Rényi graphs for the feedback gain $q = 0.3, 0.5$ and 0.8	RandomNetDemo3.eps
A1.72	Gossiping with deterministic communication topologies	ConsensusDemo22.eps
A1.73	Gossiping with random communication	ConsensusDemo24.eps
A1.73	Gossiping with random communication	ConsensusDemo25.eps
A1.74	Gossiping with the communication to the next two followers \ldots	ConsensusDemo26.eps
A1.79	Disturbance behaviour of the multirotor fleet with switching P con- troller	SelfOrgCopterDemo8.eps
A1.79	Disturbance behaviour of the multirotor fleet with switching PI con- troller	SelfOrgCopterDemo11.eps
A1.80	Disturbance behaviour of the controlled multirotors	SelfOrgCopterDemo9.eps
A1.81	Disturbance effect on the multirotor with PI controller	SelfOrgCopterDemo10.eps
A1.82	Relation between T_{\min} and $d_{\Delta \max}$	EventtriggeredDemo1.eps

10

 $A1.83 \qquad \hbox{Event-triggered synchronisation of six undamped oscillators} \qquad \ldots \ldots \qquad \verb"EventtriggeredSync5.eps" \\$

A1.84 Event-triggered synchronisation with path graph communication . EventtriggeredSync6.eps