
7
Generic properties of linear systems

Controllability and observability are generic properties of dynamical systems that can
be found by using the structure graph. Whereas most of the control problems require
that the plant has these generic properties, three examples illustrate that in specific
situations the violation of generic properties due to a specific parameter adjustment
helps to satisfy the control goals.

7.1 Generic properties and atypical systems

This chapter deals with properties of linear dynamical systems that are established by the sys-
tem structure and hold for a large set of parameter values. These properties are not only valid
for specific systems, but they hold for large sets of systems and are, thus, said to be generic

properties (or structural properties). The controllability and the observability, which will be
investigated in this chapter in detail, are two important examples of generic properties, both
of which are prerequisites for solving control problems. It will be explained how they can be
expressed in graph-theoretical terms and in which sense they are generic.

The chapter has two goals. First, it should describe properties of dynamical systems that can
be found without knowing the parameter values of a system Σ under consideration. Instead of
a state-space model with a fixed parameter set, a directed graph is used for the analysis, which
will be called the structure graph of the system. To set up this graph, the only information
necessary concerns the position of the non-zero elements in the matrices of the state-space
model of Σ. These positions are the same for a large set S of systems and, hence, typical for
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the system class that Σ belongs to. Graph-theoretical methods are used to check whether this
system class possesses the generic properties of controllability and observability.

The second goal is to reveal the general methodology how to analyse structural models
and how to come to conclusions with respect to specific systems. Since the structure graph
does not represent an individual system Σ but a class S of structurally equivalent systems, the
well known properties of controllability and observability cannot be applied. New notions have
to be introduced, which will be called structural controllability and structural observability.
To clarify the meaning of the new notions, a relation is set up between the properties of the
individual systems and the structural properties.

Structural
analysis

Numerical
analysis

�=([A], [B ], [C ])

�=(A, B, C )

Abstraction Correspondence

Structural controllability of �
Structural observability of �

Controllability of �
Observability of �

Fig. 7.1: Ways of analysing the controllability and observability of a system

To emphasise the importance of the second goal of this chapter, Fig. 7.1 compares two
ways for analysing a system Σ. The usual way, which is called numerical analysis, takes a
system Σ = (A,B,C) and uses the well-known criteria of KALMAN or HAUTUS to check
whether Σ is completely controllable and completely observable. Since both criteria provide
necessary and sufficient conditions, this check gives a unique result.

The structural analysis distinguishes from the numerical analysis in two points, namely with
respect to the subject of the analysis and with respect to the interpretation of the result. It does
not consider a single system Σ, but the class S of systems that have the same structure as Σ and
is described by the structure matrices [A], [B] and [C]. The analysis result is a characterisation
of the structural observability and the structural controllability of the set S. Necessary and
sufficient conditions for these properties will be given below, which imply that the structural
analysis, like the numerical analysis, gives the best possible result in deciding whether the
system class S has these properties or not.

Figure 7.1 points to three important questions, which will be answered in this chapter:

• How should the structural controllability and the structural observability be defined?

• How can a class S of systems be analysed with respect to these structural properties?

• What is the correspondence between the numerical and the structural properties of control-
lability and observability?

The first question is answered by Definitions 7.2 and 7.3, which also imply the answer to the
last question given by Corollary 7.1 stating that the structural properties of a class of systems
are necessary for the numerical properties to exist for any system (A,B,C) ∈ S of this class.
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Necessary and sufficient conditions for the structural properties are given by Theorems 7.1
and 7.2 as answers to the second question.

Validity of generic properties. With respect to the correspondence marked on the right-hand
side of Fig. 7.1 the question occurs how do the structural properties of the set S transfer to
any individual system Σ ∈ S. More precisely: If S is structurally controllable, how many
systems Σ ∈ S are controllable? The answer is: almost all.

The term “almost all” has a clear mathematical meaning. It is used if an infinite set is
considered and one has a property Π that holds true for all elements in an open and dense
subset. Then every point of this infinite set has this property Π or is arbitrarily close to such a
point. Without going into details, it is important to understand that such a property Π is generic
in the sense that nearly all elements have it and the elements of the set that do not have it are
atypical representatives of the set.

In mathematical terms, consider a class of systems with the parameters p1, p2,..., pd, which
vary independently of each other. Consider a property Π that is valid for all systems unless the
polynomials φi(p), (i = 1, 2, ..., l) of the parameter vector p ∈ R

d vanish. Then the set

P = {p ∈ R
d |φ1(p) = φ2(p) = ... = φl(p) = 0},

for which the property Π does not hold is an algebraic variety (Appendix A2.1 on p. 720).
The important aspect is the fact that P is a closed set. If a property Π does not hold for some
parameter vector p ∈ P then a small change of p most likely moves the parameter vector out
of the set P . The interpretation is that the property Π is generic and almost all systems with a
parameter p ∈ R

d have it.

Example 7.1 Generic rank of a matrix and the set of atypical matrices

To illustrate this fact, consider the matrix and its structure matrix

A =

⎛

⎝
a11 0 a13

0 a22 0
0 0 a33

⎞

⎠ → [A] =

⎛

⎝
∗ 0 ∗
0 ∗ 0
0 0 ∗

⎞

⎠ .

[A] has the structural rank equal to 3, which implies that the matrix A has the numerical rank 3 for
“almost all” real elements a11, a22, a33, a13 and a24 (cf. Example 5.8).

A detailed analysis of A shows that this matrix has full rank if and only if the relation

a11a22a33 	= 0

holds. Stated the other way round, A has not the full rank if and only if the relation

a11a22a33 = 0 (7.1)

is valid. Equation (7.1) describes the exceptional parameter set, for which the rank of A is smaller than
the structural rank of [A], in terms of the polynomial

φ1(a11, a22, a33) = a11a22a33.

As the element a13 does not matter in this investigation, Fig. 7.2 shows the parameter space R
3 of the

three remaining elements. The exceptional parameters for which the generic property is not a property
of A lie on the three planes, which are described by the relations
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a11 = 0, a22 = 0 or a33 = 0.

The set of all these parameters

P =

⎧
⎨

⎩

⎛

⎝
a11

a22

a33

⎞

⎠ ∈ R
3

∣∣∣∣∣∣
φ1(a11, a22, a33) = 0

⎫
⎬

⎭

is an algebraic variety according to Appendix A2.1.

Fig. 7.2: Parameter space of the matrix considered with three planes of
exceptional parameter values

This example illustrates that a property, which can be recognised by considering the structure of
a matrix (or, more generally, the structure of a system), is generic if it is transferred to any matrix or
system of an infinite set with the exception of some elements. The set of exceptions can be visualised
as a hypersurface in the parameter space. If a change of one or several parameters move the matrix (or
system) away from the hypersurface, the generic property appears. ✷

7.2 Results on the controllability and observability of linear systems

7.2.1 Models

This section reviews well known results concerning the controllability and observability of
linear systems as a preparation of the structural investigations of the next sections. The system

Σ :

{
ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t),
(7.2)

has the state vector x ∈ R
n, the input vector u ∈ R

m and the output vector y ∈ R
p. The output

feedback
C : u(t) = −Kyy(t) (7.3)

has the (m× p)–matrix Ky and leads to the closed-loop system (7.2), (7.3) represented by
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Σ :

{
ẋ(t) = (A−BKyC)x(t), x(0) = x0

y(t) = Cx(t)
(7.4)

with the closed-loop system matrix

A = A−BKyC. (7.5)

Fig. 7.3: Centralised vs. decentralised control of a system Σ

Structurally constrained controllers. Most of the investigations of this chapter concern
the situation in which the controller can combine any output yi(t), (i = 1, 2, ..., p) with any
input uj(t), (j = 1, 2, ...,m), which is the typical situation in multivariable control. In some
applications, however, the controller has to be restricted, for example, to be a decentralised
controller that consists of independent feedback loops from the i–th output yi(t) towards the
i–th input ui(t) and is represented by separate equations

Ci : ui(t) = −kiiyi(t), i = 1, 2, ..., N (7.6)

for the N = m = p control channels (ui, yi). Then the controller (7.3) has a diagonal matrix:

Ky =

⎛
⎜⎝

k11
k22 . . .

kNN

⎞
⎟⎠ .

Figure 7.3 compares both situations. In the left part, C is said to be a centralised controller,
because all output signals are processed by a centralised control unit and fed back to all inputs.
In the right part of the figure the controller is restricted to combine only the output with the
input of the i–th channel. This controller is said to be a decentralised controller. Its control
stations (7.6) can be implemented in a locally distributed manner.

7.2.2 Controllability and observability criteria

The controllability concerns the situation that a system is at time t = 0 in the state x0 and should
be moved within a finite time interval [0, te] into an arbitrarily given final state x(te) = xe

by an appropriately chosen control input u[0,te]. The symbol u[0,te] emphasises that it is not
sufficient to select u(t) at a specific time t, but one has to choose the input over the indicated
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time period 0 ≤ t ≤ te. The question to be answered asks: Is it possible for all pairs (x0,xe)
to find such an input function u[0,te]? If the answer is in the affirmative, the system Σ is called
completely controllable.

Similarly, the observability of a system concerns the situation that the input u[0,te] and the
outputy[0,te] are measured over some finite time interval [0, te] and that one wants to reconstruct
the unknown initial state x0. If this problem can be solved for any initial state x0 and any
input u[0,te], the system Σ is said to be completely observable.

Both notions are summarised in the following definition:

Definition 7.1 (Controllability and observability)

The system Σ is said to be completely controllable if for any pair (x0,xe) there is an input

function u[0,te] that moves the system state within an finite time interval [0, te] towards the final

state x(te) = xe. The system is said to be completely observable if it is possible to reconstruct

the initial state x0 from the input u[0,te] and the output y[0,te].

Well-known necessary and sufficient conditions for a system to be completely controllable or
completely observable are summarised in the following theorem:

Lemma 7.1 (Controllability and observability tests)

The system Σ is completely controllable if and only if the following equivalent conditions are

satisfied:

• (KALMAN:) The controllability matrix

SC =
(
B AB A2B ... An−1B

)
(7.7)

has full rank:

rank SC = n. (7.8)

• (HAUTUS:) For all eigenvalues λi of the matrix A the following condition is satisfied:

rank (λiI −A B) = n, i = 1, 2, ..., n. (7.9)

The system Σ is completely observable if and only if the following equivalent conditions are

satisfied:

• (KALMAN:) The observability matrix

SO =

⎛
⎜⎜⎜⎝

C

CA
...

CAn−1

⎞
⎟⎟⎟⎠ (7.10)

has full rank:

rank SO = n. (7.11)

• (HAUTUS:) For all eigenvalues λi of the matrix A the following condition is satisfied:

rank

(
λiI −A

C

)
= n, i = 1, 2, ..., n. (7.12)
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Obviously, these conditions do not depend upon the choice of the time te and, thus, the proper-
ties of controllability and observability are valid for arbitrary te > 0. As in the theorem above,
the two equivalent conditions are often referred to with the name of their author. Since the
controllability tests concern the matrices A and B and the observability tests the matrices A
and C one also says that the pairs (A,B) or (A,C) are completely controllable or completely
observable, respectively, if the conditions of Lemma 7.1 are satisfied.

The criteria (7.9) and (7.12) can be used to associate the controllability and the observability
property to the eigenvalues of the matrix A. This is an important step if the system is not
completely observable or not completely controllable and one wants to know which part of the
system cannot be controlled or observed. If (7.9) or (7.12) is violated for an eigenvalue λi, this
eigenvalue is said to be uncontrollable or unobservable. Furthermore, such eigenvalues are said
to be input decoupling zeros or output decoupling zeros of the system, respectively.

The connection between uncontrollable or unobservable eigenvalues and input or output
decoupling zeros makes clear that a structural analysis that finds uncontrollable or unobserva-
ble parts of a system simultaneously shows the existence of decoupling zeros. Note that the
structural results will concern the existence of such eigenvalues and zeros, but cannot find the
numerical value of them.

Duality. Controllability and observability are dual properties in the following sense. If one
considers the system

ΣD :

{
ẋD(t) = ATxD(t) +CTuD(t), xD(0) = x0

yD(t) = BTxD(t)
(7.13)

and applies the controllability criteria to (AT,CT) then one checks the observability of the
original pair (A,C) and vice versa. ΣD is said to be the dual system of Σ. Consequently, the
following considerations can focus on the controllability property and derive the corresponding
results on the observability by utilising this duality property.

A further important aspect of these properties is their invariance with respect to state trans-
formations. If the state-space model (7.2) of Σ is formulated in terms of a new state vector

x̃(t) = T−1x(t) (7.14)

with a regular transformation matrix T , then the new representation of Σ satisfies the control-
lability and observability conditions if and only if the original model has satisfied them.

Example 7.2 System with an output decoupling zero

The system

Σ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) =

⎛

⎝
−1 0 1
1 1 1
1 0 −2

⎞

⎠x(t) +

⎛

⎝
1
0
0

⎞

⎠u(t), x(0) = x0

y(t) = (1 0 0)x(t)

with the scalar input u(t) and the scalar output y(t) satisfies the Kalman controllability criterion (7.8)
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rankSC = rank

⎛

⎝
1 −1 2
0 1 1
0 1 −3

⎞

⎠ = 3,

but does not pass the observability test (7.11):

rank SO =

⎛

⎝
1 0 0
−1 0 1
1 0 3

⎞

⎠ = 2 < 3.

The Hautus criterion (7.12) reveals that the eigenvalue λ1 = 1 is not observable and, hence, is an output
decoupling zero.

Fig. 7.4: Step response and behaviour of the state variables x2(t) and x3(t)

A consequence of these properties can be seen in Fig. 7.4, which shows the step response in the top
subplot and the behaviour of the state variables x2(t) and x3(t) in the two other plots. The step input
stimulates the exponentially increasing behaviour of x2(t), which has the analytical expression

x2(t) = (0 1 0)A−1eAt
b− (0 1 0)A−1

b

= 3 + 0.8e t + 2.218e −0.362t − 0.0181e −2.618t

with the term e t including the eigenvalue λ1 = 1. This term does not appear in the output

y(t) = c
T
A

−1eAt
b− c

T
A

−1
b

= 2− 1.896e −0.362t − 0.1056e −2.618t t→∞
−→ 2

that converges to the static reinforcement ks = 2. It is in line with the notion of a zero to say that Σ has
an output decoupling zero at λ1 = 1, because the internal movement of the system along the functi-
on e λ1t is blocked when considering the transition from the state vector x(t) towards the output y(t). ✷
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7.2.3 Canonical structure of linear systems

If a system is not completely controllable, it can be decomposed into a controllable subsystem
and a remaining subsystem that does not have any input. This decomposition is arranged by a
state transformation (7.14) with an appropriate matrix T leading to the model

Σ :

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
˙̃x1(t)

˙̃x2(t)

)
=

(
Ã11 Ã12

O Ã22

)(
x̃1(t)

x̃2(t)

)
+

(
B̃1

O

)
u(t)

y(t) = (C̃1 C̃2)

(
x̃1(t)

x̃2(t)

) (7.15)

with a completely controllable pair (Ã11, B̃1), whereas the input u(t) affects only the vec-
tor x̃1(t), but not the vector x̃2(t). This property is visible in the block diagram of Fig. 7.5.

Fig. 7.5: Decomposition of a linear system with respect to its controllability

A similar decomposition can be made with respect to the observability of the system. The
combination of both decompositions is called the Kalman decomposition. As shown in the large
block in Fig. 7.6, the system Σ is represented by four subsystems

Σ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

˙̃x1(t)
˙̃x2(t)
˙̃x3(t)
˙̃x4(t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Ã11 Ã12 Ã13 Ã14

O Ã22 O Ã24

O O Ã33 Ã34

O O O Ã44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x̃1(t)
x̃2(t)
x̃3(t)
x̃4(t)

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

B̃1

B̃2

O

O

⎞
⎟⎟⎠u(t)

y(t) = (O C̃2 O C̃4)

⎛
⎜⎜⎝

x̃1(t)
x̃2(t)
x̃3(t)
x̃4(t)

⎞
⎟⎟⎠

(7.16)

with the following properties:

• The pairs (Ã11, B̃1) and (Ã22, B̃2) are completely controllable.

• The pairs (Ã22, C̃2) and (Ã44, C̃4) are completely observable.
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Controller

controllable
not observable

x1

controllable
observable

x2

u y

~

~

not controllable
not observable

x3

not controllable
observable

x4

~

~

Fig. 7.6: Kalman decomposition and feedback controller

The other pairs are obviously not controllable or not observable. The transformed model (7.16)
represents the canonical structure of linear systems. Every system can be decomposed into
these four subsystems. However, in many applications, only one or two subsystems actually
appear with a non-trivial state vector (dim x̃i > 0).

The decomposition clearly shows that only the controllable and observable subsystem lies
in the feedback loop, which is closed by a controller coupling the signals y(t) and u(t). In
particular, any feedback controller can only change the eigenvalues of the matrix Ã22, whereas
for all closed-loop systems the eigenvalues of the other three diagonal blocks Ã11, Ã33 and Ã44

remain the same. One says that these eigenvalues are fixed, as the following section will explain.

7.2.4 Fixed eigenvalues

The eigenvalues λi{A}, (i = 1, 2, ..., n) appearing in the model (7.2) are the elements of the
spectrum of A

σ(A) =
{
λ1{A}, λ2{A}, ..., λn{A}

}

and can be classified with respect to their controllability and observability properties. They
are said to be controllable and observable if they satisfy the rank conditions (7.9) and (7.12).
Note that now the controllability and observability properties are associated with any single
eigenvalue, whereas in Definition 7.1 these properties have been defined for the system Σ as a
whole. The set of all controllable and observable eigenvalues is

σCO(A,B,C) =

{
λ ∈ σ(A)

∣∣∣∣∣ rank (λI −A B) = n and rank

(
λI −A

C

)
= n

}
.
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The remaining eigenvalues are said to be fixed:1

σfix(A,B,C) =

{
λ ∈ σ(A)

∣∣∣∣∣ rank (λI −A B) < n or rank

(
λI −A

C

)
< n

}
.

The spectrum of A can be partitioned into disjoint sets as

σ(A) = σCO(A,B,C) ∪ σfix(A,B,C).

The important property of the fixed eigenvalues is that no controller Ky can change these
eigenvalues. This fact is represented by the relation

σfix(A,B,C) =
⋂

Ky ∈ R
m×p

σ(A −BKyC), (7.17)

where the intersection is determined with respect to any feedback matrix that may be app-
lied to a system with m inputs and p outputs. As usual in multivariable control, it is assumed
that any output yi(t), (i = 1, 2, ..., p) can be connected by a controller with any input uj(t),
(j = 1, 2, ...,m), which means that the controller is unconstrained.

The important aspect of the controllability and observability properties introduced in Defi-
nition 7.1 is the fact that all controllable and observable eigenvalues can be changed by some
feedback Ky. These eigenvalues appear in the spectrum σ(A) of the plant, but, for any appro-
priate controller matrix, not in the spectrum σ(A − BKyC) of the closed-loop system and,
hence, not in σfix. With other words, controllable and observable eigenvalues are “changeable”
by feedback control. Correspondingly, if a system is completely controllable and completely
observable then for any λ ∈ CC there exists a feedback matrix Ky such that

det(λI −A+BKyC) �= 0

holds. By using an appropriate feedback matrix Ky, one can “avoid” every complex value λ as
an eigenvalues of the closed-loop system. In particular, one can “avoid” the eigenvalue λ = 0
and make the closed-loop system matrix regular:

∃Ky : det(A−BKyC) �= 0. (7.18)

For the sake of completeness, it should be mentioned that a static output feedback (7.3) is
generally not capable of moving all changeable eigenvalues to arbitrarily given values. This aim
can generally be reached if either the whole state vector is fed back by a state feedback

u(t) = −Kx(t)

or if the controller has some dynamics. In particular, if the controller includes an observer for
the current state x(t) and feeds the approximation x̂(t) back

u(t) = −Kx̂(t),

1 In some publications, not the eigenvalues λi but the corresponding modes e λit of the linear system are said to be
fixed.
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it is possible to assign the eigenvalues of the closed-loop system predefined values. The follo-
wing investigations only decide whether the eigenvalues of a system Σ are “changeable” or not,
but it is not investigated how the eigenvalues can be shifted in a certain way.

Structurally constrained controllers. The investigations above can be generalised for de-
centralised controllers

u(t) = −Kyy(t) with Ky =

⎛
⎜⎝

k11
k22 . . .

kNN

⎞
⎟⎠ , (7.19)

for which many parameters of the controller are fixed to zero and only those in the main dia-
gonal can be freely chosen. The structural analysis will show how these constraints manifest
themselves in a reduced ability of the controller to change the eigenvalues of the closed-loop
system. Instead of the fixed eigenvalues defined above for centralised controllers, a set of decen-

tralised fixed eigenvalues occur that takes into consideration that the possible control matrices
are constrained to belong to some set Ky. For decentralised controllers, Ky includes only the
diagonal matrices used in eqn. (7.19). Then the set of decentralised fixed eigenvalues (or de-
centralised fixed modes) is defined to be

σdec(A,B,C) =
⋂

Ky ∈ Ky

σ(A −BKyC), (7.20)

which is a superset of the set σfix defined above:

σdec(A,B,C) ⊇ σfix(A,B,C).

In the following investigations the set of fixed eigenvalues is considered with a complete
(centralised) controller without mentioning, but the structural analysis will show in an intui-
tively clear manner how constraints on the feedback matrix affect the set of fixed eigenvalues.

7.3 Structural controllability and structural observability

7.3.1 Motivation

Controllability and observability are fundamental systems-theoretical notions that concern the
couplings among the state variables and between the state and the actuators or the sensors,
respectively. If one considers these properties from an abstract viewpoint, the following conjec-
ture seems to be obvious, which refers to a graph-theoretical representation of the system that
shows which signals are coupled:

Conjecture: A dynamical system is completely controllable if in its structure graph
all state vertices xi, (i = 1, 2, ..., n) are reachable from at least one input vertex ui,
(i = 1, 2, ...,m) to facilitate an appropriate control action. The system is completely
observable if there are signal paths from any of the state variables xi to at least one of
the output signals yj , (j = 1, 2, ..., p) each so that the measured output can be used to
reconstruct the system state.



7.3 Structural controllability and structural observability 247

The following investigations should show that this conjecture is (nearly) true. They consider
a structural description of the system Σ as a digraph, which distinguishes only between pre-
sent and absent couplings among the signals of the state-space model of Σ. Graph-theoretical
methods will lead to necessary and sufficient conditions for the newly introduced properties
of structural controllability and structural observability, which include, besides the suspected
reachability properties, an additional rank condition for the structure matrices of Σ.

7.3.2 Structure graph of linear dynamical systems

The structure of the dynamical system

Σ :

{
ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t),
(7.21)

is determined by the position of the non-vanishing elements of A, B and C . As explained
in detail in Section 5.3.1, one classifies the elements of these matrices as those that are non-
zero for (almost) all meaningful parameter values of the system and those that are fixed to
zero. Accordingly, these elements are replaced by an ∗ or 0 and the resulting matrices [A], [B]
and [C] are said to be the corresponding structure matrices. For example, a reactor with the
parameters F , V1, V2 denoting a flow and two volumes has the matrices

A =

⎛
⎝

− F
V1

0

F
V2

− F
V2

⎞
⎠ −→ [A] =

(
∗ 0

∗ ∗

)
.

It is important to notice that the structure matrix can be set up without knowing the precise
numerical values of the parameters involved.

In order to distinguish between the numerical matrices appearing in a model and the struc-
ture matrices used in the analysis, the structure matrices are denoted by S with the correspon-
ding indices: SA, SB and SC . In literature, the representation of a system by these structure
matrices is said to be a structured system, but this notion is not used here, because the numerical
matrices have the same zero pattern as the structure matrices and are, thus, structured as well.

Since any structure matrix specifies a set of structurally equivalent matrices, the step from
the system model (7.21) towards the structure matrices SA, SB and SC means to leave the
investigations of a unique dynamical system Σ and to consider a set S of linear systems with
the same structure. This set is represented by

S = {(A,B,C) : [A] = SA, [B] = SB , [C] = SC}. (7.22)

If a set S of systems should be defined by given structure matrices, the expression

S = (SA,SB ,SC)

is used. Since in many applications one sets up a state-space model with the matrices A, B and
C and derives the class of systems from them, the set S is often defined as
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S = ([A], [B], [C]).

Then A, B and C are usually not matrices with numerical elements, but include analytical
expressions in terms of the system parameters. With the relation

(A,B,C) ∈ S

one means that a triple of specified matrices is considered that belongs to the set S. All results
of the following investigations have to hold true for such sets of systems.

Graph-theoretical interpretation of the system structure. An explanatory diagram of the
class (7.22) of linear systems is obtained by drawing a directed graph

Structure graph:
−→GS = (V , E) (7.23)

with

• V – set of vertices representing all input signals ui, all state variables xi and all output
signals yi,

• E – set of edges that connect vertices if the corresponding element of the structure ma-
trix SA, SB or SC , respectively, is an asterisk.

As the names of the signals involved are used as the names of the vertices, the set V is composed
of three sets

V = U ∪ X ∪ Y.
Correspondingly, one speaks of input vertices ui ∈ U , state vertices xi ∈ X and output verti-
ces yi ∈ Y . ui is associated with the i–th column of SB , yi with the i–th row of SC and xi with
the i–th columns of SA and SC and with the i–th row of SA and SB .

The adjacency matrix QS of the structure graph
−→GS is given by

QS =

⎛
⎝

SA SB O

O O O

SC O O

⎞
⎠

X
U
Y

for the order of the vertices marked on the right-hand side. To remember the construction of
this matrix, write the state-space model (7.21) in the form

⎛
⎝

ẋ(t)
u(t)
y(t)

⎞
⎠ =

⎛
⎝

A B O

O O O

C O O

⎞
⎠
⎛
⎝

x(t)
u(t)
y(t)

⎞
⎠ . (7.24)

The position of the matrices A, B and C is the same as the position of the corresponding
structure matrices in the adjacency matrix QS . The middle row, which now means u(t) = 0

will be replaced by a controller in the later investigations (cf. eqn. (7.28)). The graph
−→GS has

N = n+m+ p vertices and, thus, the matrix QS the dimension (N ×N ).
For drawing a structure graph, memorise the following rules:
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• There is a directed edge (uj → xi) if the ij–th element of SB is an ∗.

• There is a directed edge (xj → xi) if the ij–th element of SA is an ∗.

• There is a directed edge (xj → yi) if the ij–th element of SC is an ∗.

The graph
−→GS shows the signal couplings that may appear in all systems that belong to the set

S = (SA, SB , SC). For the controllability analysis, only that part of
−→GS has to be considered

that concerns the input and the state vertices. This subgraph
−→GC with the vertex set U ∪ X has

the adjacency matrix

QC =

(
SA SB

O O

)

with the index “C” indicating the controllability analysis. For the observability analysis only
the relations among the state vertices and the output vertices have to be considered, which
are represented by the subgraph

−→GO of
−→GS , where the index “O” is a hint to the observability

analysis. This graph has the vertex set X ∪ Y and the adjacency matrix

QO =

(
SA O

SC O

)
.

Example 7.3 Structure graph of a third-order system

Consider the system with the state-space model

Σ :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) =

⎛

⎝
0 0 a13

a21 a22 a23

0 0 a33

⎞

⎠x(t) +

⎛

⎝
0 0
b21 0
0 b32

⎞

⎠u(t)

y(t) =

(
0 c12 0
0 0 c23

)
x(t).

(7.25)

The model distinguishes between matrix elements that depend upon system parameters and those that
are known to vanish. Therefore, one can read the structure matrices from this model as follows:

SA =

⎛

⎝
0 0 ∗
∗ ∗ ∗
0 0 ∗

⎞

⎠ , SB =

⎛

⎝
0 0
∗ 0
0 ∗

⎞

⎠ , SC =

(
0 ∗ 0
0 0 ∗

)
. (7.26)

With the adjacency matrix

QS =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . ∗ . . . .
∗ ∗ ∗ ∗ . . .
. . ∗ . ∗ . .

. . . . . . .

. . . . . . .

. ∗ . . . . .

. . ∗ . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 7.7: Structure graph of the
example system class
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the graph
−→
GS in Fig. 7.7 is drawn. As it seems to be rather complicated to set up an adjacency matrix with

so many zeros (symbolised by dots), one can use the rules given above to draw the graph directly. The
controllability test below will only use the subgraph

−→
GC and the observability tests the subgraph

−→
GO. ✷

7.3.3 Structure graph of closed-loop systems

If the system (7.21) is combined with an output feedback (7.3)

C : u(t) = −Kyy(t)

the structure graph gets additional edges from all output vertices towards all input vertices.
Since the feedback matrix Ky may have any parameters, its (m× p)–structure matrix SK

Centralised controller: SK =

⎛
⎜⎜⎜⎝

∗ ∗ · · · ∗
∗ ∗ · · · ∗
...

...
...

∗ ∗ · · · ∗

⎞
⎟⎟⎟⎠ . (7.27)

has only ∗ elements. The extension of the model by the feedback term in
⎛
⎝

ẋ(t)
u(t)
y(t)

⎞
⎠ =

⎛
⎝

A B O

O O −Ky

C O O

⎞
⎠
⎛
⎝

x(t)
u(t)
y(t)

⎞
⎠ (7.28)

leads to the extended adjacency matrix

QF =

⎛
⎝

SA SB O

O O SK
SC O O

⎞
⎠

X
U
Y

and the new structure graph denoted by
−→GF with the index “F” for the considered class of feed-

back loops. Figure 7.8 depicts the corresponding extension of the structure graph of Fig. 7.7. It
clearly shows the two parts representing the structure of the plant and of the controller.

An alternative representation of the class of feedback loops is obtained if the structure graph
is set up for the model (7.4)

Σ : ẋ(t) = (A−BKyC)︸ ︷︷ ︸
A

x(t)

of the closed-loop system, for which the structure graph is denoted by
−→GR. This model does not

explicitly represent the inputs and the output of the plant. The graph has only state vertices and
the adjacency matrix results from the structure matrices of the components as

QR = SA + SBSKSC .
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Fig. 7.8: Structure graph of an example with output feedback

y1

x1

x2

y2

x3

u2

u1

�F

�
x1

x2

x3

�R

�

Fig. 7.9: Comparison of the two structure graphs

The two graphs of the feedback loop are compared in Fig. 7.9 for an example.

Structure graph for feedback loops with structurally constrained controllers. In the
graph-theoretical setting, the notion of structurally constrained controllers is easy to under-
stand, because the structural constraints fix some elements of the feedback matrix to zero. If
one cannot implement a feedback between the output yj(t) and the input ui(t), the control-
ler parameter kij is fixed to zero, which is represented by a zero in the ij–th position of the
structure matrix SK . For decentralised controllers the structure matrix is

Decentralised controller: SK =

⎛
⎜⎜⎜⎝

∗ 0 · · · 0
0 ∗ · · · 0
...

...
...

0 0 · · · ∗

⎞
⎟⎟⎟⎠ . (7.29)

Accordingly, the structure graph
−→GF of the restricted class of closed-loop systems includes only

edges between the vertices yi and ui of the same channel i.
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Example 7.4 Third-order systems with decentralised controller

Figure 7.9 compares the graphs
−→
GF and

−→
GR for the system class considered in Example 7.3. Obviously,

when going from
−→
GF towards

−→
GR, all paths from some state vertex (e. g. x2) towards another state

vertex (x3) through output and input vertices (y1 and u2) are reduced to a direct edges (x2 → x3). The
resulting graph

−→
GR is a concise representation of the class of feedback loops, in which all couplings are

reduced to directed edges among the state vertices.
The following calculations, which use the arithmetic rules of p. 164, demonstrate how the adjacency

matrix of the graph
−→
GR is obtained:

QR = SA + SBSKSC

=

⎛

⎝
0 0 ∗
∗ ∗ ∗
0 0 ∗

⎞

⎠+

⎛

⎝
0 0
∗ 0
0 ∗

⎞

⎠
(

∗ ∗
∗ ∗

)(
0 ∗ 0
0 0 ∗

)
=

⎛

⎝
0 0 ∗
∗ ∗ ∗
0 ∗ ∗

⎞

⎠ .

It is the adjacency matrix of the graph −→
GR shown in Fig. 7.9.

y1

x1

x2

y2

x3

u2

u1

Decentralised
controller Plant

�F
�

x1

x2

x3

�R
�

Fig. 7.10: Structure graphs of a feedback system with decentralised controllers

If the controller is restricted to be a decentralised controller, additional edges exist in the structure
graph among the output vertices yj and the input vertices ui only for the same index: i = j. The
structural constraints are visible in the reduction of the structure graph shown in Fig. 7.10 in comparison
to the graph on the left-hand side of Fig. 7.9. The new adjacency matrix is obtained as follows:

QR = SA + SBSKSC

=

⎛

⎝
0 0 ∗
∗ ∗ ∗
0 0 ∗

⎞

⎠+

⎛

⎝
0 0
∗ 0
0 ∗

⎞

⎠
(

∗ 0
0 ∗

)(
0 ∗ 0
0 0 ∗

)

=

⎛

⎝
0 0 ∗
∗ ∗ ∗
0 ∗ ∗

⎞

⎠ .

The reduction of the freedom of the controller results in a graph
−→
GR with fewer edges and, hence,

different properties in comparison to a centralised controller. ✷
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7.3.4 Reachability analysis of the structure graph

The conjecture stated at the beginning of this section on p. 247 can be expressed as a reachability
property of the structure graph. For controllability, all state vertices should be reachable from at
least one input vertex. As shown in Section 5.2.2, to raise the adjacency matrix to the power k
means to follow paths in the graph with k edges. When applied to the adjacency matrix

QC =

(
SA SB

O O

)
,

which describes the connections among the input vertices and the state vertices, the result is

Qk
C =

(
Sk
A Sk−1

A SB

O O

)
.

Since the conjecture refers to the reachability of the state vertices xi, (i = 1, 2, ..., n) from the
input vertices ui, (i = 1, 2, ...,m), only the marked upper right part of Qk

C is important. Paths
starting in an input vertex uj and leading through k− 1 state vertices to the state vertex xi exist
if the ij–th element of Sk−1

A SB is non-zero. Consequently, the reachability of the state vertices
from the input vertices are described by the state reachability matrix R̃xu = (r̃ij)

R̃xu =

n−1∑

k=0

Sk
ASB (7.30)

with the following result:

r̃ij �= 0 ⇐⇒ the state vertex xi is reachable
from the input vertex uj .

(7.31)

All state variables are reachable from at least one input vertex if the matrix R̃xu does not have
any zero row. Then the class of systems S with the structure graph

−→GC under consideration is
said to be input connected (or input-connectable or input-reachable).

If a system class S is not input connected its model can be transformed such that it gets
the form (7.15) for which the structure graph of the pair (Ã11, B̃1) is input connected. In the
transformation relation (7.14) the matrix T is now a permutation matrix P that separates the
reachable part of the state vertices from the vertices that are not reachable:

PT(A B)

(
P O

O I

)
=

(
Ã11 Ã12 B̃1

O Ã22 O

)
. (7.32)

Interpretation of the reachability for a discrete-time system. The reachability analysis has
a nice interpretation for discrete-time systems

Σd :

{
x(k + 1) = Adx(k) +Bdu(k), x(0) = x0

y(k) = Cx(k).
(7.33)
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It is well known that the controllability and observability tests stated in Lemma 7.1 are valid
for discrete-time systems after the matrices A and B have been replaced by the matrices Ad

and Bd. In the structure graph of Σd the matrices

SBd
, SAd

SBd
, S2

Ad
SBd

... Sk
Ad

SBd

show which state variables are influenced by the input u(0) at time k. Accordingly, if the ij–th
element of SBd

is an ∗, the state variable xi(1) is affected by the input uj(0) at time k = 1.
If the ij–th element of SAd

SBd
is non-zero, the state variable xi(2) is affected by uj(0) at

time k = 2 etc.
For example, if the discrete-time system (7.33) has the same structure matrices as the system

in Example 7.3, the structure graph in Fig. 7.7 reveals that the input u2(0) has a direct influence
only on x3(1) but in the next time step also on x1(2) and x2(2), which is likewise shown by
the second column of the matrices

SBd
=

⎛
⎝

∗ 0
0 0
0 ∗

⎞
⎠ and SAd

SBd
=

⎛
⎝

∗ ∗
0 ∗
0 ∗

⎞
⎠ .

Output reachability. In analogy, the reachability of the output vertices from the state vertices
can be checked by means of the output reachability matrix R̃yx = (r̃ij)

R̃yx =

n−1∑

k=0

SCSk
A

with the following result:

r̃ij �= 0 ⇐⇒ the output vertex yi is reachable
from the state vertex xj .

(7.34)

There is at least one output vertex reachable from any state vertex if the matrix R̃yx does not
have any zero column. Then the class of systems S is said to be output connected (or output
connectable or output-reachable).

7.3.5 Structural controllability of a class of linear systems

Since the structural analysis concerns a class S = (SA,SB ,SC) of systems rather than a spe-
cific system Σ = (A,B,C), Definition 7.1 is not applicable and new notions of controllability
and observability have to be introduced. The following definition extends the controllability
notion to a class of systems such that the new structural property requires all signal couplings
that are necessary for the complete controllability according to Definition 7.1. As the matrix
pair (A,B) is relevant, the class of systems to be considered is

S(SA,SB) = {(A,B) : [A] = SA, [B] = SB}. (7.35)
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Definition 7.2 (Structural controllability)

A class of systems S = (SA,SB) is said to be structurally controllable if there is a sys-

tem (A,B) ∈ S that is completely controllable.

In literature, the notion of structural controllability is sometimes abbreviated as s-controllability
or one speaks of generic controllability. If the distinction between the structural controllability
of a system class and the complete controllability of an individual system should be emphasised,
the term “numerical controllability” is used for the latter notion.

The definition above has the following consequences:

Corollary 7.1 (Relation between controllability and structural controllability)

The structural controllability of the class S is a necessary condition for any system Σ ∈ S to

be completely controllable.

The other way round, if the structural analysis introduced in the sequel finds out that the class S
is not structurally controllable then all systems (A,B) ∈ S are not completely controllable.

Σ is completely controllable. =⇒ S with Σ ∈ S is structurally controllable.

All Σ ∈ S are not completely
controllable.

⇐= S is not structurally controllable.

At a first sight, one may doubt that the structural controllability does have a meaning for the
individual systems Σ ∈ S, because only a single controllable system Σ is required to call the
infinite set S structurally controllable. However, these doubts are unjustified because with a
single system Σ almost all systems in the set S are completely controllable. The controllability
is a generic property. The parameters of linear systems, which belong to a structurally control-
lable set S, but are not completely controllable, lie on a hypersurface in the parameter space of
these systems (cf. Example 7.6).

Preliminary investigations. Before necessary and sufficient conditions for the structural con-
trollability are derived, a hint to an important pitfall is appropriate. The notion of the structural
rank introduced in Section 5.3.5 suggests to investigate the structure matrix [SC] resulting from
the controllability matrix to get a test for structural controllability. If s_rank [SC] = n holds,
it seems to be evident that the inequality (5.58) implies that almost all systems of the class S
considered satisfy the Kalman criterion (7.8). However, this conclusion is a fallacy, because the
inequality (5.58) is valid only for matrices in which all ∗ elements have independent values.
This independence assumption is not satisfied for the controllability matrix SC because the
n ·nm elements of SC can be traced back to the n · (n+m) elements of the matrices A and B.
A full structural rank of [SC] does not imply that there are matrices A and B such that SC has
full (numerical) rank and, in particular, it does not imply that for almost all matrices A and B

the controllability test (7.8) is satisfied.
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Example 7.5 An uncontrollable system with full structural rank

Consider a third-order system that has the matrices

A =

⎛

⎝
a11 a12 a13

a21 0 0
a31 0 0

⎞

⎠ and B =

⎛

⎝
b
0
0

⎞

⎠ . (7.36)

The controllability matrix has the following properties:

SC =

⎛

⎝
b a11b (a2

11 + a12a21 + a13a31)b
0 a21b a11a21b
0 a31b a11a31b

⎞

⎠

detSC = b3 (a21a11a31 − a31a11a21) = 0 (7.37)

s_rank [SC] =

⎛

⎝
• ∗ ∗
0 • ∗
0 ∗ •

⎞

⎠ = 3. (7.38)

However, there does not exist any set of entries of (A,B) in eqn. (7.36) such that the observability
matrix has full rank. Hence, the set of systems

S = (SA,SB) with SA =

⎛

⎝
∗ ∗ ∗
∗ 0 0
∗ 0 0

⎞

⎠ , SB =

⎛

⎝
∗
0
0

⎞

⎠ (7.39)

is not structurally controllable according to Definition 7.2.
Equations (7.37) and (7.38) seem to contradict the relation (5.58) on the structural rank. However,

the elements of SC are not independent and, thus, the relation (5.58) is not valid for this matrix. ✷

Consequently, conditions for the structural controllability cannot be obtained by considering
the structure matrix [SC], but have to be derived on other ways.

Necessary and sufficient conditions for structural controllability. The goal of this pa-
ragraph is to elaborate a test that for structure matrices SA and SB says whether the class
S = (SA,SB) is structurally controllable. The first step is to prove that the conjecture presen-
ted in Section 7.3.1 provides a necessary condition (but not a sufficient condition).

According to Definition 7.2 the structural conditions have to ensure that there is at least
one pair (A,B) with A ∈ SA and B ∈ SB that satisfies the Kalman criterion (7.8). With the
relation (5.58) the rank of the controllability matrix SC satisfies the inequalities

rank SC ≤ s_rank
(
[B] [AB] ... [An−1B]

)

≤ s_rank
(
[B] [A][B] ... [A]n−1[B]

)

≤ s_rank
(
SB SASB ... Sn−1

A SB
)

for all A ∈ SA,B ∈ SB .

The second line results from eqn. (5.47). The third line is true, because a specific pair (A,B)
may have less ∗ elements than the structure matrices defining the set S. In order to make sure
that the controllability matrix may have full rank, the relation

s_rank
(
SB SASB ... Sn−1

A SB
)
= n
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has to hold, which means that the matrix in the parantheses must not have a zero row. Equiva-
lently, the sum of the matrices appearing in this matrix must not have a zero row, which can be
posed as the requirement that the state reachability matrix (7.30)

R̃xu =
n−1∑

k=0

Sk
ASB

must not have a zero row. Hence, the structure graph
−→GC has to be input connected. In summary,

to have an input connected graph is a necessary condition for the structural controllability of
a class S. To shorten the notation, if the graph is input connected then one also says that the
class S is input connected.

The following counterexample shows that this property is not sufficient for the structural
controllability.

Example 7.6 Structural controllability analysis of two parallel integrators

Consider the state equation of two parallel integrator systems

Σ :

(
ẋ1(t)

ẋ2(t)

)

=

(
1

TI1

1
TI2

)

u(t) (7.40)

with the time constants TI1 and TI2. This system belongs to the class S characterised by

SA =

(
0 0

0 0

)

and SB =

(
∗

∗

)

.

The structure graph
−→
GC shown in Fig. 7.11 is input connected.

Fig. 7.11: Structure graph of two parallel integrators

However, in the class S = (SA,SB) of all integrator systems (7.40) there is no system (A,B)
that is completely controllable because the controllability matrix

SC =

(
1

TI1
0

1
TI2

0

)

is singular for all parameters TI1 and TI2. This example shows that the input connectivity of the structure
graph is a necessary but not a sufficient condition for the system class to be structurally controllable. ✷
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A second necessary condition should be derived now to exclude systems like the two-integrator
system of Example 7.6. As the non-zero elements of [A] can be associated to any real number,
each class S includes pairs (A,B) with a vanishing eigenvalue λi = 0, for which the Hautus
criterion (7.9) implies the following inequalities:

rank (−A B) ≤ s_rank ([A] [B])

≤ s_rank (SA SB).

The Hautus test can be satisfied by appropriate matrices A ∈ SA and B ∈ SB only if

s_rank (SA SB) = n (7.41)

holds. This condition is not satisfied by the integrator system considered in Example 7.6.
The following theorem states that the two necessary conditions together are also sufficient

for the structural controllability of S.

Theorem 7.1 (Structural controllability)

A class S = (SA,SB) is structurally controllable if and only if the following two conditions

are satisfied:

1. S is input connected.

2. The condition (7.41) is satisfied.

Outline of the proof. The necessity of the two conditions has already been proved by the investigations
above. The sufficiency part is rather involved and should be abbreviated here by describing the proof
steps.

The proof is accomplished by showing that almost all systems Σ ∈ S satisfy the Hautus criteri-
on (7.9). Since the condition (7.41) ensures that eqn. (7.9) holds for λ = 0 for almost all (A,B) ∈ S ,
the crucial step is to prove that if S is input connected the Hautus criterion is satisfied for all λ 	= 0 for
almost all (A,B) ∈ S . This proof is obtained as follows. For every choice of A ∈ SA and B ∈ SB
the critical values of λ are the eigenvalues of A, because for these values the matrix λI −A has a rank
deficiency that has to be compensated within the matrix (λI−A B) by the matrix B. A lengthy proof
shows that if S is input connected, such a compensation is possible for almost all admissible matrices.

To illustrate this step, assume that the matrix SB has no zero row. Then S is input connected for
arbitrary SA. For any A the rank of the matrix λiI−A with λi being an eigenvalue of A is less than n.
However, for almost all matrices B the eigenvectors vi belonging to λi lead to Bvi 	= 0 and the rank
of (λiI −A B) is equal to n as required. ✷


