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Exercises of Chapter 7

Exercise 7.6 Hardware redundancy

Consider a set of three sensors measuring a single quaetitytetz. The measurement
system can be modelled as:

y1(k) 1 fi(k) v1 (k)
ya(k) | = | 1| x(k)+ | f2(k) | + | v2(k) (S.1)
ya(k) 1 J3(k) vs(k)

wherey;(k),v: (k) and f;(k),i = 1,2, 3 respectively denote the sensor measurement, the
measurement noise, and a possible additive faulk),7 = 1, 2, 3 is assumed to be a Gaus-
sian white noise sequence with zero mean and variafce o = 1 ando? = 2. Besides,

the noise sequences are mutually uncorrelated. The fagltsiadelled as unknown deter-
ministic signals, and it is assumed that simultaneousdaldtnot occur. A fault on sensoér
thus corresponds to a non-zero value ffk) from an unknown fault occurrence time, say
ko.

1. Letus rewrite equation (S.1) more compactly as
T
yk)=[111] x(k)+ f(k)+v(k) (S.2)

wherey (k) = [ y1(k) ya(k) ys(k) ]T and similarly forf (k) andv (k). Let 2 denote

a basis for the left null space (ﬁfl 11 }T. Show thatr(k) = Ry(k) is independent
of z(k).

2. Prove thatr(k) has zero mean in the absence of fault and that its mean is &gual
2 ;f:(k) in the presence of a fault on sensoHere (2. ; denotes the-th column of
matrix £2. Besides, show that the variancefk) is equal toQ, = 2QNT where
Q = diag (07,03, 03)

3. Letr, = (QQTQT)*%r(k). Show thatr, (k) is distributed asv'(O, I) in the absence
of fault, and as/\/((QQTQT)*%Q,,ifi(k),I) upon occurrence of a fault on thieth
sensor.

4. Assume that positive step-like faults with minimum magdé equal td).5 can occur.
Design a multi-CUSUM algorithm of the form presented in &at.2.6 to detect and
isolate such faults.

5. Generate a data sequence according to model (S.1) in wtigh= sin(0.1k), the noise
properties are as described above, #ingk) = 0.5 1{x>20y, fo(k) = fa(k) = 0 for
all &.

6. Process the data generated in point e) by the multi-CUSIdbtithm designed in point
d), and check its effectiveness.

7. Check how the magnitude of the fault affects the obtaiesdlts by repeating points e)
and f) for different fault magnitudes’



Solution
1. By definition of the left null space of a matrix,
T
", [ 111 } =0
and hence,

r(k) = 2y (k) = Q(f(k) + v(k)) (S.3)

which does not depend af(k).
2. In the absence of faulf;(k) = 0, and thus

E(r(k)) = RE(v(k)) = 0.

In the presence of a fault on sengponly thei’® component off (k) is non
zero. Taking the expected value of (S.3) yields:

E(r(k)) = 2f(k) = 2. fi(k)
As far as the variance of the residual is concerned, by diefinit
Q, = E[(r(k) — E(r(k))(r(k) — E(r(k)))"]
= QF [v(k)v(k)"] "

= nQnNT
(S.4)

3. Byhypothesis; (k) are normally distributed, hene€k) is normally distributed
as well since it is made of a linear combination of Gaussignals. In the
absence of fault, direct computation of the mean yields:

E(ra (k) = (2QQT) 2 E(r(k)) =0

where the last inequality results from the previous poiimifarly, in the pres-
ence of fault, one deduces from the previous point:

E(ra(k)) = (2Q27) 2 E(r(k)) = (2Q2") 221 fi(k).
Finally the computation of the variance yields:

E [(ro(k) = B(ra(k)(ra(k) = B(ra(k))"]
_z — 7

= (2QNT)":0QNT (2QNT) 73

4. Thelog-likelihood ratios to be used in the recursive atho for fault detection
and isolation have the form

_ 1
Sk(Q? O) = l*l’qunl (Irn(k) - §l'l’q) q= 17 21 3



Since the normalized residual has a covariance matrix equlé identity, the
three loglikelihood ratios to be used are obtained from timva expression by
setting@,. = I3 and computings, = (QQQT)*%Q“qfq(k) with f, (k) =

0.5. Ityields:
| —0.3006 | 0.3824 | —0.0818
=1 _p 2442 H2=1 0612 B3 =1 03085
. Example of MATLAB Code

nitmax= 1000; % nitmax is the number of data samples
k=1:nitmax;

y=[1;1;1]*sin(0.1*k);

y(1,:)=y(1,:)+[zeros(1,20) 0.5*ones(1,nitmax-20)];

% Generation of the measurement noise
vO=randn(3,nitmax);

v=diag([1 1 sqrt(2)])*vO;

% Obtaining the noisy measurements

y=y+v;

plot(k.y)

. Example of MATLAB code
See Figure S.1.



% Computation of the mean of the residual in the different faulty modes

Omega=null ([1 1 17)"';

Normal_ fact=inv ((sqgrtm(Omega*diag([1 1 2])*Omega'))) *Omega;
mu_l=Normal_ fact*[0.5;0;0];

mu_2=Normal_ fact*[0;0.5;0];

mu_3=Normal fact*[0;0;0.5];

% Initialization of the other program parameters

stop=0;

[n_r,m rl=size (Omega) ;

nit=1; % number of iterations (equal to the number of measurement samples)
r_n=zeros(n_r,nitmax); % r_n stands for the normalized residual vector
gl=zeros (l,nitmax);% gl to g3 stand for the test functions used in the FDI
algorithm

g2=zeros (l,nitmax); % All values are stored to be able to plot their evolution
g3=zeros (1l,nitmax) ;

h=10; % h stands for the threshold in the test functions

while (stop==0) & (nit <= nitmax),
r n(:,nit)=inv ((sgrtm(Omega*diag([1 1 2])*Omega'))) *Omega*y(:,nit);
gbar_l=max(0,gbar_ l+mu_1'*(r_n(:,nit)-0.5*mu_1));
gbar_2=max(0,gbar_ 2+mu_2'*(r_n(:,nit)-0.5*mu_2)) ;
gbar_ 3=max(0,gbar 3+mu_3'*(r_n(:,nit)-0.5*mu_3)) ;
gl (nit)=min(gbar_l-gbar_ 2, gbar_ l-gbar_3);
g2 (nit)=min(gbar_ 2-gbar_ 1, gbar_2-gbar_3);
g3 (nit)=min(gbar_ 3-gbar_ 1, gbar_3-gbar_2);
if gl(nit)>h, disp('alarm fault sensor 1'), stop=1, end;
if g2(nit)>h, disp('alarm fault sensor 2'), stop=1, end;
if g3(nit)>h, disp('alarm fault sensor 3'), stop=1l, end;
nit=nit+1;

end;

Fig. S.1. MATLAB code for point 6



Exercises of Chapter 8

Exercise 8.1 Lattice-based analysis

Consider an over-actuated system with three actuatorsrmsdensors:

t

) us (t)
ml(t) _ 0 1 £C1(t) 011
<5€2(t)) a <—1 2> (wz(t)> " <1 0 1) Zig;
(yl(t)) N (0 1) (xl(t))
ya2(t) 11 z2(t)

In order to understand the generality of the lattice-basedyais, this exercise considers,
instead of the quadratic control problem, a simple spetifinahat allows hand calculations.
The specification is as follows: the two closed-loop eigares are wished to be real and

equal to—2 when output feedback is used, namelyifer 1,2, 3 one hasi; () = ki1yi(t) +
ki2y2(t) wherek;1, k;2 are the control gains to be designed.

1. Characterise the set of admissible nominal control laws.

2. Assuming the two sensors are not faulty, analyse thetedfeactuator faults under the
reconfiguration strategy.

3. Is it possible to analyse the effect of sensor faults utfitkerreconfiguration strategy in
the same way®

Solution

1. Replacing:; by their values, one gets the closed-loop behaviour

@1\ [ koo + k3o 1+ kot + ka1 + koo + ka2 1
To =1+ kia+ks2 2+ ki1 + k31 + k12 + ka2 T2
whose eigenvalues satisfy the specification if and only if

k11 + k12 + koo + k31 + 2kse = —6
ko1 + k31 + 3ka2 — k12 + 2k32 — k12ka1—
—ki2k31 — kzoko1 + ki1kao + ksikoo 4+ kiikse = 3

The two equations can be solved in terms of the output feddbaims and
moreover the solution is not unique, therefore the desigarrselect one that
fits best some extra criterion.

2. Assuming the two sensors are not faulty, analyse theteffeactuator faults
under the reconfiguration strategy.
To study the recoverability of an actuator configuratione dras to check
whether the design equations can be solved when the outpdbdek gains
associated with the missing actuators are zeroed. For dgangmfigurationt
is recoverable if and only if



ki1 + k12 = —6
kiz = =3
has a solution, which is the case. Note that configuratibeing recoverable,
its predecessors2,13 and123 are recoverable. Note also that there is only one
solution for configuratiort but some degrees of freedom exist for its predeces-
SOrs.

Similarly it can be checked that configuratidand its predecessoig, 23 and
123 are recoverable, since

koy = —6
ko1 4 3ka2 = 3

has a solution, while configuratiénis not recoverable because it is impossible
to satisfy

k31 + 2k3a = 3
However, its predecessor8, 23 and 123 are recoverable. Fig. S.2 shows the
lattice of configurations of the three actuators system.t8\tonfigurations are
recoverable, grey configurations are not recoverable, anihmal recoverable
configurations have a bold contour. The /12 means that basosg 1 and 2 are
healthy.
. The procedure is the same, since switching-off a faulygseimplies that the

associated output feedback gain is zeroed. For examplemass sensor 1 is
faulty but actuators 123 are healthy, configurati@d/2 is recoverable because

k1o + koo 4 2k3y = —6
3kog — k1o + 2k3zo = 3

has a solution.
So is configuratioi23/1 associated with the design equations

ki1 + k31 = —6
ko1 + k31 = 3

and configuratiori2/2 associated with

k12 + koo = —6
3kos — k12 = 3
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Fig. S.2. Recoverable configurations when the two sensors are healthy

but configurationd /2 and 2/1 are not recoverable, being respectively associ-
ated with the design equations

kiz = —6
kiz = =3
and
0= -6
kop = 3

Fig. S.3 shows the recoverability span when sensor 1 isyfault
Remark that one single lattice can be drawn consideringehéhy/faulty state
of each of the five components, as shown on Fig. S.4.
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Fig. S.3. Recoverable configurations when sensor 1 is faulty

Fig. S.4. Recoverable configurations of the 5 components system
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Exercise 8.2 Reliable control

Let abed be the four actuators of a linear time-invariant system:

0 0.17 0.17 0.33

A | 017 —0a7 017 0
N 0.33 0.33 0 0.17
0 017 0 0
050 0 0 0
2
By — 0 025 0 O 7
0 0 025 0

0 0 0 0.25
where matrixA is unstable, having the following set of eigenvalues:
A(A) = {—0.39; —0.031 + 0.1415; 0.28} .
We are interested in the optimal quadratic control usingalewing weighting matrices:

1000

0000
— and R = I4.
Q 0010 ‘

0000

Faulty actuators are recovered, if possible, using thenfegquration strategy. Under the re-
coverability specification that the optimal cost of the m&ogured system should not ex-
ceed 4 times the optimal cost of the healthy system, all cordigpns are recoverable except
{ac,ad, be, a, b, c,d} as shown in Fig. S.5, where the white nodes are recoverable this
grey nodes are not.

1. From Fig. S.5 identify the minimal recoverable configimas.

2. Compute the coverage and the redundancy degrees. Issteensiail-operational with
respect to the first fault? Configuratiomls bd, cd are respectively recovered by the opti-
mal state feedbacks., = K., upa = Kpax andu.q = K .qx Where the feedback
gains are given below and result in the cost matridés,, W;,, W, whose maximal
eigenvalues are8.53, 23.76 and21.60:

—1.27 —0.95 —1.10 —0.88
—0.47 —1.85 —1.64 —1.36

Kab -
—0.55 —1.64 —1.91 —1.09
—0.44 —1.36 —1.09 —1.19
—3.18 —2.18 —2.32 —2.41
—1.09 —1.88 —1.82 —1.49
Kyg =

—-1.16 —1.82 —2.23 —1.28
—1.20 —1.49 —1.28 —1.63
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3.

Fig. S.5. Recoverable configurations

—3.15 —1.72 —1.73 —2.37

—0.86 —1.87 —1.51 —1.58

—-0.86 —1.51 —1.67 —1.17

—1.18 —1.58 —1.17 —1.82
Leti/ be the reliable control bank that recovers all the recoverebnfigurations. List
the control laws irl{. For each recoverable configuration list the control lawsvbjch

it is recovered. If several control laws allow to recoveraegi configuration, which one
is to be selected?

K=

. Assume the control bank can implement only two controklawhat is the control law

to be discarded? What is the influence on the coverage anédo@dancy degrees? Is
the system still fail-operational with respect to the fieilf?0

Solution

1.

2.

The configurationgb, bd andcd are recoverable while their successors are not,
hence they are minimal recoverable configurations.

The coverage is 0.5 since 8 configurations out of 16 arevezable. The short-
est path betweembcd and the sefV R of non recoverable faults is 2, hence the
strong redundancy degree is 2. The longest path betwkehand NR is 3
hence the weak reedundancy degree. The system is fail aperlavith respect

to the first fault, since all configurations with 3 actuatamsi@coverable.

. Using the Reliable Control Theorem, a bank of three cdnéws, namely

Uap = Koz, upg = Kpgx andu.q = K 4z IS able to recover all the recov-
erable configurations. The recovery control laws are ginefable 1.
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Table S.1. Recovery control laws

i i
abcd  {Kap, Koa, Kea}
abc {Kav}

acd {Kca}

abd {Kab,Kbd}
bcd {ch,Kbd}

ab {Kab}
bd {Kpa}
cd {ch}

Configurationabed can be recovered by all 3 control laws, the one associated
with the smallest cost ig,;,. Similarly, abd is best recovered by,;, andbcd by
Ued-

4. Keeping only the two control laws,, = K« andu.q = K.qx, there is only
one configuration, namely that can no longer be recovered. The coverage is
reduced from 8/16 to 7/16, while the redundancy degreesiretim@asame. The
system is still fail-operational with respect to the firatifa

Exercise 8.3 Sensor network design

Consider a measurement system with four unknown variables-, xs, x4 and five sen-
sorsa, b, ¢, d, e that provide five measurement signalS vy, ys, y4, ys. Its structure graph is
given by Fig. S.6.

We are interested in the output-connection property (at®), which is a very important
structural property of sensor networks. A system is ougmutrected if there is a path in the
structural graph from any unknown variable to a sensor (& necessary condition for
the structural observability of the unknown variablesyprfrFig. S.6, the system is clearly
output-connected when the 5 sensors are used.

1. The lattice of system configurations allows to analysesttuations in which sensors are
lost or removed from the sensor network. Determine whethaepeyty P holds or not
for all the 4 sensor configurations (the configurations wioere sensor is lost from the
nominal configuration).

2. We now wish to determine whether the property holds or aotHe sensor configura-
tions where 2 sensors are lost. Do we need to analyse thetsalbsede ?

3. What is the output connection span, what are its minimafigarations.

4. Compute the coverage, and the weak and strong redundageges of the nominal
configurationabede. Is propertyP fail operational with respect to the first fault?

5. What are the critical sensor subsets.
6. What can be said about sengor

7. Note that the critical subsaetis a singleton, therefore the probability to loose property
‘P because of the loss afis one order of magnitude larger than the probability to éoos
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Fig. S.6. Structural graph of the measurement system

propertyP because of the loss @k or de (assuming their failures are independent).
Sinceb is useless, it might be interesting to remove semsfitom the sensor network
and to duplicate sensar The new system;azcde is shown on Fig. S.7.

Fig. S.7. The new system with removed and. duplicated

Go through questions 1 to 6 with the new system, and make aisopa.O
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Solution

1.

2.

3.

The property is still satisfied for configuratiofig:d, abce, abde, acde, butis no
longer satisfied for configuratidrde.

No, becauseécde being not output-connected, its successors cannot beteutpu
connected.

The lattice of sensor configurations is analysed by irsingdevels.

Level 1:P is satisfied for configurationgcd, abce, abde, acde as seen in ques-
tion 1

Level 2:P is satisfied for configurations:d, abe, ace, ade

Level 3:P is satisfied for configurations:

Levels 4 and 5 are empty.

The minimal configurations are: andacd. The span is given by Fig. S.8.

Fig. S.8. Span of the output connection property

4. The coverage is 10/32 because 10 configurations out of2hm8sible ones

belong to the span dp.

The weak RDD is 4 which is the length of the longest path betvtiee nominal
configurationubede and the non-recoverable configurations. In this case, there
are 6 such paths:

abcde — abce — abe —ae — NR

abcde — abce — ace —ae — NR

abcde — abde — abe — ae — NR

abcde — abde — ace —ae — NR

abcde — acde — ace —ae — NR
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abcde — acde — ade — ae — NR
whereN R is the set of non-recoverable configurations.
The strong RDD is 1 because the shortest patliide — N R. The strong RDD
=1 shows that propert® is not fail operational with respect to the first fault.
5. The critical sensor subsets arece andde. Indeed, the loss of givesbede €
N R, the loss ote givesabd € N R and the loss ofie givesabc € N R.
. Sensob is useless, because its loss does not change the value aviliage.
7. Fig. S.9 gives the span of propef/for the new system, which provides the
answer to all the questions.

(o2

ajascde

Fig. S.9. Span of the output connection property in the new system

Exercises of Chapter 10

Exercise 10.1 Diagnosis of the two-tank system

In this exercise we develop the complete diagnosis scherfedfvo tank system in Chap-
ter 2, where two level sensoks,, andha,,, were implemented in addition to the flow sensor
gm - The set of constraints and unknown variables are the fatigw

fug = {c1,c2,¢3,da,¢5,¢6,d7, 8, Cm, Ch1, Ch2}
X = {qL7qP7h17h17h27h27q27q12}'

The correspondence with the model in Chapter 2 is as follows Eq. (2.7) ¢z is Eq. (2.6),

c3 IS Eq. (2.1)¢s is EQ. (2.4)¢s is EQ. (2.2) ands is EQ. (2.5). The measurement equations
arecm Which is Eq. (2.3) andy1, cn2 Which are respectively the added measurements of the
two levelsh, andh,. The constraintsl, andd; respectively express that andh, are the
time derivatives o, andh.. The incidence matrix with respect £ is:
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|E1|QL|QP|iL1|h1|Q12|h2|i12|Q2|
c1 ) 1
co D 1
cs3 1 1 1
da O 1
cs 1 1 1
Ch1 @
Ce 1 1 1
d 1] o
cs 1 1
Cm )
Ch2 @

Based on the complete matching shown by the entiieshe over-constrained subsystem
produces three residuals whose structures are

C(p1) = {ec1,¢2,¢3,¢5,Cn1,Chat
c(p2) = {Clv027037067d77cm7chl7ch.2}

C (p3) = {087 Cm, ChQ} .

1. What is the residuals’ signature table.

2. The mathematical constraints andd; specify thath, andis are the derivatives of;
and h». Discarding them (since they cannot be faulty), determieesystem’s distin-
guishability classes and draw the distinguishability ¢abl

3. For each of the eight possible residual configurationd, tfie minimal hitting sets and
draw the diagnosis tabléel

Solution

1. The signature table is:

OK | ¢c1 | co|e3|dy|ces|ce|dr|csg|cm | cn| cn
01 1111 1 1 1
P2 1]1]1 1)1 1 1 1
03 1)1 1

2. The distinguishability classes af¥ = {OK},D* = {ci,ca,¢3,¢11},D? =
{es}, D = {c}, D* = {cs}, D° = {cm}, andDb = {c;»} that give the
distinguishability table:

DO [ pl D2 | D3| Dt Do DS
o1 1] 1 1
D2 1 1 1|1
03 111
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3. The diagnosis table is:

‘ P1P2P3 ‘ Diagnosis
000 Do
001 D
010 D?
011 D> U (D3 x DY)
100 D?
101 D? x D*
110 D' U (D? x D?)
111 | DS U (D' x D*) U (D! x D%) U (P? x D°) U (D? x D? x D*)

Exercise 10.2 Two-tank system decomposition

This exercise illustrates Remark 10.5 still with the twokiagstem. Assume each tank is a
subsystem with the structures:
fi1Ug, = {c1,c2,¢3,d4,05,¢n1}
T = {QL7QP7h17 517Q12}
T = {h2}
faUgs = {cs,dr,cs,cm,cna}
T2 = {h2, ilz,tp}
Ty = {q12} -

The global incidence matrix is decomposed as follows:

|21|QL|QP|h1|h1|Q12|h2|

c1 ) 1

co ) 1

cs 1 1 11O

da O] 1

cs 1 110
Ch1 @

|22|h2|h2|q2|q12|

Ce 1 1 )
dr | @

cs 1

Cm )

Ch2 ()

and two complete matchings with respect to the unknown blassare shown byD.
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1. How many local residuals are respectively provided®*liyand X> and what are their
structures?

2. Can you explain why there are less local residuals thamwaoasidering the global
structure?d

Solution

1. There is no over-constrained subsysten¥inand there is only one local resid-
ual in X5 with the structur€ ¢y, ¢, cs }-

2. Two of the three residuals exhibited by the global stmechave disappeared.

Indeed, a closer look at the two local structures shows thatithe external
variablehs can be computed usingy, ¢z, 3, ¢s, cp1 } While in Xo, hs is an
internal variable that can be computed using. Equating these two results
would give a global residual with the structufe, ¢z, cs, ¢5, cp1, cro} that in-
cludes constraints from the two subsystems. This followmfthe fact that in
the structural analysis of the global model is over-constrained, while it is
just-constrained in each of the two local structural arialySimilarly, ¢;> can
be computed in%; from {c1, ¢, 3, ch1} and in Xy from {cq, d7, ¢, cha} SO
the structure of the global residual obtained by equatiegetiwo results would
be the union of these two structures.

Exercise 10.3 Coordination of local diagnosis

Consider a system in which there are 3 different estimat@sions of an unknown variable
2 from the known variables” U ¢’ (remember that the notatiauf, 4 meansu, y and a
number of their time derivatives):

x = fi (u',y’) using the subset of constraints = {a,b,c, d}
z = fo(u',y’) using the subset of constraints = {e, f}
x = fs3(u',y’) using the subset of constraints = {b, f, g, h}.

Three residuals are obtained:

pr = fi(uy) = fa(u',y)
p2 = fl (ulvyl) - f3 (ulvyl)
pP3 = f2 (ul7yl) - f3 (u,7yl) .

What are the structures of the residuals?
What is the distinguishability table?

Assuming there are three subsystems that run one residcial what are the local diag-
nosis tables?

. What is the coordinated diagnosis tahile?
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Solution

1. The structure of the residuals are:

C(p1) = {a,b7c,d,e,f}
C(pQ) = {a,b,c,d, fagah}
C’(pg) = {b,e,f,g,h}

2. The distinguishibility table is:

‘OK‘a,c,d‘ILf‘e‘g,h‘

p1 0 1 1)1 0
P2 0 1 1 ]0| 1
03 0 0 1 (1] 1
3. The local diagnosis tables are:
‘Pl‘ Ay ‘PQ‘ A} ‘P?,‘ A ‘
0| OKU{g,h} 0 OKU{e} 0 | OK U{a,c,d}
1 | {a,b,c,d,e,f} | 1 | {a,b,e,d,f,g,h} | 1| {be,f,g,h}
4. The coordinated diagnosis table is:
| P1P203 | Ay | As | Az | A
000 OK U{g,h} OKU{e} OK U{a,c,d} OK U{g,h}
x {e} x {a,c,d}
001 OK U{g,h} OKU{e} {b,e, f,g,h} {g,h} x {e}
010 OK U{g,h} | {a,b,c,d, f,g,h} | OK U{a,c,d} | {g,h} x{a,c,d}
011 OK U{g,h} {a,b,c,d, f,g,h} {b,e, f,g,h} {g,h}
100 {a,b,c,d,e, [} OKU{e} OK U{a,c,d} Cannot happen
101 {a,b,c,d,e, [} OKU{e} {b,e, f,g,h} {e}
110 {a,b,c,d,e, f} | {a,b,c,d, f,g,h} | OK U{a,c,d} {a,c,d}
111 {a,b,c,d,e, f} | {a,b,c,d, f,g,h} | {b,e, f,g,h} {b, f} U{a,c,d}
x{e g, h}
U{e} x{g, h}
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Exercises of Chapter 12

Exercise 12.2 Diagnosis of an interconnected discrete-event system

Consider the system modelled by the I/O automata netwonkishio Fig. S.10. The system
is designed so that the two subsystems represented by treatat4, and.A, cannot reach
the state2 and4 simultaneously.

4 1,5/3,1
2,0/3,1
Al a
2,1/2,0 g0
=382
| 2,4/3,1 2,%/4,0
2511 $1=Ty
20/I1  10/11
1,%/1,1
|4 b

Fig. S.10. Composite system model

1. Combine the models shown in the figure to get a determiastiematon of the overall
system. Show that the specification mentioned above idisdtis

2. The faultf, appearing in the automato#, makes the coupling output identical tol
(r2(k) = 1) independently of the automaton state. Change the mddedccordingly.
What happens in the model of the overall system?

3. Use decentralised diagnosers to detect the faults it possible to select an input se-
quence for both subsystems such that the fault is detecfedeltbe subsystems reach
simultaneously the stat@sand4?

4. Consider now a sensor fault, which makes the output of thienaaton.4; constant:
w1(k) = 1. Can decentralised diagnosers detect this fault? Sefgmbssible, distin-
guishing input sequences for both subsystems.

Solution

1. The overall system is described by the /O automaton showig. S.11. The
model shows that indeed the sté®e4)" is not reachable.
2. The faulty overall system can reach the statet)™ as shown in Fig. S.12.
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Fig. S.12. Model of the faulty overall system



