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Exercises of Chapter 7

Exercise 7.6 Hardware redundancy

Consider a set of three sensors measuring a single quantity denotedx. The measurement
system can be modelled as:





y1(k)

y2(k)

y3(k)



 =





1

1

1


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


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
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 (S.1)

whereyi(k), vi(k) andfi(k), i = 1, 2, 3 respectively denote the sensor measurement, the
measurement noise, and a possible additive fault.vi(k), i = 1, 2, 3 is assumed to be a Gaus-
sian white noise sequence with zero mean and varianceσ2

1 = σ2

2 = 1 andσ2

3 = 2. Besides,
the noise sequences are mutually uncorrelated. The faults are modelled as unknown deter-
ministic signals, and it is assumed that simultaneous faults do not occur. A fault on sensori
thus corresponds to a non-zero value forfi(k) from an unknown fault occurrence time, say
k0.

1. Let us rewrite equation (S.1) more compactly as

y(k) =
[

1 1 1
]T

x(k) + f(k) + v(k) (S.2)

wherey(k) =
[

y1(k) y2(k) y3(k)
]T

and similarly forf(k) andv(k). LetΩ denote

a basis for the left null space of
[

1 1 1
]T

. Show thatr(k) ≡ Ωy(k) is independent
of x(k).

2. Prove thatr(k) has zero mean in the absence of fault and that its mean is equalto
Ω.,ifi(k) in the presence of a fault on sensori. HereΩ.,i denotes thei-th column of
matrix Ω. Besides, show that the variance ofr(k) is equal toQr = ΩQΩT where
Q = diag (σ2

1 , σ
2

2 , σ
2

3)

3. Letrn = (ΩQrΩ
T)−

1

2 r(k). Show thatrn(k) is distributed asN (O, I) in the absence

of fault, and asN ((ΩQrΩ
T)−

1

2Ω.,ifi(k), I) upon occurrence of a fault on thei-th
sensor.

4. Assume that positive step-like faults with minimum magnitude equal to0.5 can occur.
Design a multi-CUSUM algorithm of the form presented in section 7.2.6 to detect and
isolate such faults.

5. Generate a data sequence according to model (S.1) in whichx(k) = sin(0.1k), the noise
properties are as described above, andf1(k) = 0.5 1{k≥20}, f2(k) = f3(k) = 0 for
all k.

6. Process the data generated in point e) by the multi-CUSUM algorithm designed in point
d), and check its effectiveness.

7. Check how the magnitude of the fault affects the obtained results by repeating points e)
and f) for different fault magnitudes.✷
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Solution

1. By definition of the left null space of a matrix,

Ω
[

1 1 1
]T

= 0

and hence,
r(k) = Ωy(k) = Ω(f (k) + v(k)) (S.3)

which does not depend ofx(k).
2. In the absence of fault,f(k) = 0, and thus

E(r(k)) = ΩE(v(k)) = 0.

In the presence of a fault on sensori, only theith component off(k) is non
zero. Taking the expected value of (S.3) yields:

E(r(k)) = Ωf (k) = Ω.,ifi(k)

As far as the variance of the residual is concerned, by definition,

Qr = E
[

(r(k)− E(r(k)))(r(k)− E(r(k)))T
]

= ΩE
[

v(k)v(k)T
]

ΩT

= ΩQΩT

(S.4)

3. By hypothesisvi(k) are normally distributed, hencer(k) is normally distributed
as well since it is made of a linear combination of Gaussian signals. In the
absence of fault, direct computation of the mean yields:

E(rn(k)) = (ΩQΩT )−
1

2E(r(k)) = 0

where the last inequality results from the previous point. Similarly, in the pres-
ence of fault, one deduces from the previous point:

E(rn(k)) = (ΩQΩT )−
1

2E(r(k)) = (ΩQΩT )−
1

2Ω.,ifi(k).

Finally the computation of the variance yields:

E
[

(rn(k)− E(rn(k)))(rn(k)− E(rn(k)))
T
]

= (ΩQΩT )−
1

2ΩQΩT (ΩQΩT )−
T

2 = I

4. The log-likelihood ratios to be used in the recursive algorithm for fault detection
and isolation have the form

sk(q, 0) = µqQ
−1

rn
(rn(k)−

1

2
µq) q = 1, 2, 3



4

Since the normalized residual has a covariance matrix equalto the identity, the
three loglikelihood ratios to be used are obtained from the above expression by
settingQrn

= I3 and computingµq = (ΩQΩT )−
1

2Ω.,qfq(k) with fq(k) =
0.5. It yields:

µ
1
=

[

−0.3006

−0.2442

]

µ
2
=

[

0.3824

−0.0612

]

µ
3
=

[

−0.0818

0.3055

]

5. Example of MATLAB Code

nitmax= 1000; % nitmax is the number of data samples
k=1:nitmax;
y=[1;1;1]*sin(0.1*k);
y(1,:)=y(1,:)+[zeros(1,20) 0.5*ones(1,nitmax-20)];
% Generation of the measurement noise
v0=randn(3,nitmax);
v=diag([1 1 sqrt(2)])*v0;
% Obtaining the noisy measurements
y=y+v;
plot(k,y)

6. Example of MATLAB code
See Figure S.1.
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% Computation of the mean of the residual in the different faulty modes

Omega=null([1 1 1])';

Normal_fact=inv((sqrtm(Omega*diag([1 1 2])*Omega')))*Omega;

mu_1=Normal_fact*[0.5;0;0];
mu_2=Normal_fact*[0;0.5;0];

mu_3=Normal_fact*[0;0;0.5];

% Initialization of the 3 CUSUM algorithms

gbar_1=0;
gbar_2=0;

gbar_3=0;

% Initialization of the other program parameters 

stop=0; 
[n_r,m_r]=size(Omega);

nit=1; % number of iterations (equal to the number of measurement samples)
r_n=zeros(n_r,nitmax); % r_n stands for the normalized residual vector

g1=zeros(1,nitmax);% g1 to g3 stand for the test functions used in the FDI 
algorithm
g2=zeros(1,nitmax); % All values are stored to be able to plot their evolution

g3=zeros(1,nitmax);

h=10; % h stands for the threshold in the test functions

while (stop==0) & (nit <= nitmax),

r_n(:,nit)=inv((sqrtm(Omega*diag([1 1 2])*Omega')))*Omega*y(:,nit);

gbar_1=max(0,gbar_1+mu_1'*(r_n(:,nit)-0.5*mu_1));
gbar_2=max(0,gbar_2+mu_2'*(r_n(:,nit)-0.5*mu_2));

gbar_3=max(0,gbar_3+mu_3'*(r_n(:,nit)-0.5*mu_3));
g1(nit)=min(gbar_1-gbar_2, gbar_1-gbar_3);

g2(nit)=min(gbar_2-gbar_1, gbar_2-gbar_3);
g3(nit)=min(gbar_3-gbar_1, gbar_3-gbar_2);

if g1(nit)>h, disp('alarm fault sensor 1'), stop=1, end;

if g2(nit)>h, disp('alarm fault sensor 2'), stop=1, end;

if g3(nit)>h, disp('alarm fault sensor 3'), stop=1, end;

nit=nit+1;

end;

Fig. S.1. MATLAB code for point 6
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Exercises of Chapter 8

Exercise 8.1 Lattice-based analysis

Consider an over-actuated system with three actuators and two sensors:

(

ẋ1(t)

ẋ2(t)

)

=

(

0 1

−1 2

)(

x1(t)

x2(t)

)

+

(

0 1 1

1 0 1

)





u1(t)

u2(t)

u3(t)





(

y1(t)

y2(t)

)

=

(

0 1

1 1

)(

x1(t)

x2(t)

)

In order to understand the generality of the lattice-based analysis, this exercise considers,
instead of the quadratic control problem, a simple specification that allows hand calculations.
The specification is as follows: the two closed-loop eigenvalues are wished to be real and
equal to−2 when output feedback is used, namely fori = 1, 2, 3 one hasui(t) = ki1y1(t)+
ki2y2(t) whereki1, ki2 are the control gains to be designed.

1. Characterise the set of admissible nominal control laws.

2. Assuming the two sensors are not faulty, analyse the effect of actuator faults under the
reconfiguration strategy.

3. Is it possible to analyse the effect of sensor faults underthe reconfiguration strategy in
the same way?✷

Solution

1. Replacingui by their values, one gets the closed-loop behaviour
(

ẋ1

ẋ2

)

=

(

k22 + k32 1 + k21 + k31 + k22 + k32

−1 + k12 + k32 2 + k11 + k31 + k12 + k32

)(

x1

x2

)

whose eigenvalues satisfy the specification if and only if

k11 + k12 + k22 + k31 + 2k32 = −6

k21 + k31 + 3k22 − k12 + 2k32 − k12k21−

−k12k31 − k32k21 + k11k22 + k31k22 + k11k32 = 3

The two equations can be solved in terms of the output feedback gains and
moreover the solution is not unique, therefore the designercan select one that
fits best some extra criterion.

2. Assuming the two sensors are not faulty, analyse the effect of actuator faults
under the reconfiguration strategy.
To study the recoverability of an actuator configuration, one has to check
whether the design equations can be solved when the output feedback gains
associated with the missing actuators are zeroed. For example, configuration1
is recoverable if and only if
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k11 + k12 = −6

k12 = −3

has a solution, which is the case. Note that configuration1 being recoverable,
its predecessors12,13 and123 are recoverable. Note also that there is only one
solution for configuration1 but some degrees of freedom exist for its predeces-
sors.
Similarly it can be checked that configuration2 and its predecessors12, 23 and
123 are recoverable, since

k22 = −6

k21 + 3k22 = 3

has a solution, while configuration3 is not recoverable because it is impossible
to satisfy

k31 + 2k32 = −6

k31 + 2k32 = 3

However, its predecessors13, 23 and123 are recoverable. Fig. S.2 shows the
lattice of configurations of the three actuators system. White configurations are
recoverable, grey configurations are not recoverable, and minimal recoverable
configurations have a bold contour. The /12 means that both sensors 1 and 2 are
healthy.

3. The procedure is the same, since switching-off a faulty sensor implies that the
associated output feedback gain is zeroed. For example, assuming sensor 1 is
faulty but actuators 123 are healthy, configuration123/2 is recoverable because

k12 + k22 + 2k32 = −6

3k22 − k12 + 2k32 = 3

has a solution.
So is configuration123/1 associated with the design equations

k11 + k31 = −6

k21 + k31 = 3

and configuration12/2 associated with

k12 + k22 = −6

3k22 − k12 = 3



8

13/1223/12

3/12 2/12

∅/12

1/12

12/12

123/12

Fig. S.2. Recoverable configurations when the two sensors are healthy

but configurations1/2 and 2/1 are not recoverable, being respectively associ-
ated with the design equations

k12 = −6

k12 = −3

and

0 = −6

k21 = 3

Fig. S.3 shows the recoverability span when sensor 1 is faulty.
Remark that one single lattice can be drawn considering the healthy/faulty state
of each of the five components, as shown on Fig. S.4.
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13/223/2

3/2 2/2

∅/2

1/2

12/2

123/2

Fig. S.3. Recoverable configurations when sensor 1 is faulty

12/∅

1/1223/1

∅/12 3/2 3/1 2/2 2/1 1/1

23/12

23/2

∅/1 ∅/2

3/12 2/12

3/∅ 2/∅

∅/∅

1/2 13/∅ 23/∅

13/2 13/1 12/1 12/2 123/∅

13/12 12/12 123/2 123/1

1/∅

123/12

Fig. S.4. Recoverable configurations of the 5 components system
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Exercise 8.2 Reliable control

Let abcd be the four actuators of a linear time-invariant system:

A =









0 0.17 0.17 0.33

−0.17 −0.17 0.17 0

0.33 0.33 0 0.17

0 0.17 0 0









B0 =









0.50 0 0 0

0 0.25 0 0

0 0 0.25 0

0 0 0 0.25









,

where matrixA is unstable, having the following set of eigenvalues:

Λ (A) = {−0.39;−0.031 ± 0.141j; 0.28} .

We are interested in the optimal quadratic control using thefollowing weighting matrices:

Q =









1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0









and R = I4.

Faulty actuators are recovered, if possible, using the reconfiguration strategy. Under the re-
coverability specification that the optimal cost of the reconfigured system should not ex-
ceed 4 times the optimal cost of the healthy system, all configurations are recoverable except
{ac, ad, bc, a, b, c, d} as shown in Fig. S.5, where the white nodes are recoverable while the
grey nodes are not.

1. From Fig. S.5 identify the minimal recoverable configurations.

2. Compute the coverage and the redundancy degrees. Is the system fail-operational with
respect to the first fault? Configurationsab, bd, cd are respectively recovered by the opti-
mal state feedbacksuab = Kabx, ubd = Kbdx anducd = Kcdx where the feedback
gains are given below and result in the cost matricesW ∗

ab, W
∗
bd, W ∗

cd whose maximal
eigenvalues are18.53, 23.76 and21.60:

Kab =









−1.27 −0.95 −1.10 −0.88

−0.47 −1.85 −1.64 −1.36

−0.55 −1.64 −1.91 −1.09

−0.44 −1.36 −1.09 −1.19









Kbd =









−3.18 −2.18 −2.32 −2.41

−1.09 −1.88 −1.82 −1.49

−1.16 −1.82 −2.23 −1.28

−1.20 −1.49 −1.28 −1.63








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cd bd bc ad ac ab

abcd

abd

d c

bcd acd abc

b a

Φ

Fig. S.5. Recoverable configurations

Kcd =









−3.15 −1.72 −1.73 −2.37

−0.86 −1.87 −1.51 −1.58

−0.86 −1.51 −1.67 −1.17

−1.18 −1.58 −1.17 −1.82









3. LetU be the reliable control bank that recovers all the recoverable configurations. List
the control laws inU . For each recoverable configuration list the control laws bywhich
it is recovered. If several control laws allow to recover a given configuration, which one
is to be selected?

4. Assume the control bank can implement only two control laws. What is the control law
to be discarded? What is the influence on the coverage and the redundancy degrees? Is
the system still fail-operational with respect to the first fault?✷

Solution

1. The configurationsab, bd andcd are recoverable while their successors are not,
hence they are minimal recoverable configurations.

2. The coverage is 0.5 since 8 configurations out of 16 are recoverable. The short-
est path betweenabcd and the setNR of non recoverable faults is 2, hence the
strong redundancy degree is 2. The longest path betweenabcd andNR is 3
hence the weak reedundancy degree. The system is fail operational with respect
to the first fault, since all configurations with 3 actuators are recoverable.

3. Using the Reliable Control Theorem, a bank of three control laws, namely
uab = Kabx, ubd = Kbdx anducd = Kcdx is able to recover all the recov-
erable configurations. The recovery control laws are given in Table 1.
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Table S.1. Recovery control laws

i Ki

abcd {Kab,Kbd,Kcd}

abc {Kab}

acd {Kcd}

abd {Kab,Kbd}

bcd {Kcd,Kbd}

ab {Kab}

bd {Kbd}

cd {Kcd}

Configurationabcd can be recovered by all 3 control laws, the one associated
with the smallest cost isuab. Similarly,abd is best recovered byuab andbcd by
ucd.

4. Keeping only the two control lawsuab = Kabx anducd = Kcdx, there is only
one configuration, namelybd that can no longer be recovered. The coverage is
reduced from 8/16 to 7/16, while the redundancy degrees remain the same. The
system is still fail-operational with respect to the first fault.

Exercise 8.3 Sensor network design

Consider a measurement system with four unknown variablesx1, x2, x3, x4 and five sen-
sorsa, b, c, d, e that provide five measurement signalsy1, y2, y3, y4, y5. Its structure graph is
given by Fig. S.6.

We are interested in the output-connection property (denotedP), which is a very important
structural property of sensor networks. A system is output-connected if there is a path in the
structural graph from any unknown variable to a sensor (thisis a necessary condition for
the structural observability of the unknown variables). From Fig. S.6, the system is clearly
output-connected when the 5 sensors are used.

1. The lattice of system configurations allows to analyse thesituations in which sensors are
lost or removed from the sensor network. Determine whether propertyP holds or not
for all the 4 sensor configurations (the configurations whereone sensor is lost from the
nominal configuration).

2. We now wish to determine whether the property holds or not for the sensor configura-
tions where 2 sensors are lost. Do we need to analyse the subsets of bcde ?

3. What is the output connection span, what are its minimal configurations.

4. Compute the coverage, and the weak and strong redundancy degrees of the nominal
configurationabcde. Is propertyP fail operational with respect to the first fault?

5. What are the critical sensor subsets.

6. What can be said about sensorb.

7. Note that the critical subseta is a singleton, therefore the probability to loose property
P because of the loss ofa is one order of magnitude larger than the probability to loose
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b

x1 y1

x2 y2

x3 y3

y5

x4 y4

a

c

e

d

Fig. S.6. Structural graph of the measurement system

propertyP because of the loss ofce or de (assuming their failures are independent).
Sinceb is useless, it might be interesting to remove sensorb from the sensor network
and to duplicate sensora. The new systema1a2cde is shown on Fig. S.7.

a2

x1 y1

x2 y2

x3 y3

y5

x4 y4

a1

c

d

e

Fig. S.7. The new system withb removed anda duplicated

Go through questions 1 to 6 with the new system, and make comparisons.✷
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Solution

1. The property is still satisfied for configurationsabcd, abce, abde, acde, but is no
longer satisfied for configurationbcde.

2. No, becausebcde being not output-connected, its successors cannot be output-
connected.

3. The lattice of sensor configurations is analysed by increasing levels.
Level 1:P is satisfied for configurationsabcd, abce, abde, acde as seen in ques-
tion 1
Level 2:P is satisfied for configurationsacd, abe, ace, ade
Level 3:P is satisfied for configurationsae
Levels 4 and 5 are empty.
The minimal configurations areae andacd. The span is given by Fig. S.8.

acd abe ace ade

abcde

abdeabcd abce acde

ae

Fig. S.8. Span of the output connection property

4. The coverage is 10/32 because 10 configurations out of the 32 possible ones
belong to the span ofP .
The weak RDD is 4 which is the length of the longest path between the nominal
configurationabcde and the non-recoverable configurations. In this case, there
are 6 such paths:
abcde− abce− abe− ae−NR
abcde− abce− ace− ae−NR
abcde− abde− abe− ae−NR
abcde− abde− ace− ae−NR
abcde− acde− ace− ae−NR
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abcde− acde − ade− ae−NR
whereNR is the set of non-recoverable configurations.
The strong RDD is 1 because the shortest path isabcde−NR. The strong RDD
= 1 shows that propertyP is not fail operational with respect to the first fault.

5. The critical sensor subsets area, ce andde. Indeed, the loss ofa givesbcde ∈
NR, the loss ofce givesabd ∈ NR and the loss ofde givesabc ∈ NR.

6. Sensorb is useless, because its loss does not change the value of the coverage.
7. Fig. S.9 gives the span of propertyP for the new system, which provides the

answer to all the questions.

a1a2e a1ce a2ce a1cd a2cd

a1a2cde

a1a2de

a1e a2e

a1a2ce a1a2cd a1cde a2cde

a1de a2de

Fig. S.9. Span of the output connection property in the new system

Exercises of Chapter 10

Exercise 10.1 Diagnosis of the two-tank system

In this exercise we develop the complete diagnosis scheme ofthe two tank system in Chap-
ter 2, where two level sensorsh1m andh2m were implemented in addition to the flow sensor
qm. The set of constraints and unknown variables are the following:

f ∪ g = {c1, c2, c3, d4, c5, c6, d7, c8, cm, ch1, ch2}

X =
{

qL, qP , h1, ḣ1, h2, ḣ2, q2, q12
}

.

The correspondence with the model in Chapter 2 is as follows:c1 is Eq. (2.7),c2 is Eq. (2.6),
c3 is Eq. (2.1),c5 is Eq. (2.4),c6 is Eq. (2.2) andc8 is Eq. (2.5). The measurement equations
arecm which is Eq. (2.3) andch1, ch2 which are respectively the added measurements of the
two levelsh1 andh2. The constraintsd4 andd7 respectively express thatḣ1 andḣ2 are the
time derivatives ofh1 andh2. The incidence matrix with respect toX is:
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Σ1 qL qP ḣ1 h1 q12 h2 ḣ2 q2

c1 1© 1

c2 1© 1

c3 1 1 1 1©

d4 1© 1

c5 1 1 1

ch1 1©

c6 1 1 1

d7 1 1©

c8 1 1

cm 1©

ch2 1©

Based on the complete matching shown by the entries1©, the over-constrained subsystem
produces three residuals whose structures are

C (ρ1) = {c1, c2, c3, c5, ch1, ch2}

C (ρ2) = {c1, c2, c3, c6, d7, cm, ch1, ch2}

C (ρ3) = {c8, cm, ch2} .

1. What is the residuals’ signature table.

2. The mathematical constraintsd4 andd7 specify thatḣ1 andḣ2 are the derivatives ofh1

andh2. Discarding them (since they cannot be faulty), determine the system’s distin-
guishability classes and draw the distinguishability table.

3. For each of the eight possible residual configurations, find the minimal hitting sets and
draw the diagnosis table.✷

Solution

1. The signature table is:

OK c1 c2 c3 d4 c5 c6 d7 c8 cm ch1 ch2

ρ1 1 1 1 1 1 1

ρ2 1 1 1 1 1 1 1 1

ρ3 1 1 1

2. The distinguishability classes areD0 = {OK},D1 = {c1, c2, c3, ch1},D2 =
{c5}, D3 = {c6}, D4 = {c8}, D5 = {cm}, andD6 = {ch2} that give the
distinguishability table:

D0 D1 D2 D3 D4 D5 D6

ρ1 1 1 1

ρ2 1 1 1 1

ρ3 1 1 1
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3. The diagnosis table is:

ρ1ρ2ρ3 Diagnosis

000 D0

001 D4

010 D3

011 D5 ∪
(

D3 ×D4
)

100 D2

101 D2 ×D4

110 D1 ∪
(

D2 ×D3
)

111 D6 ∪
(

D1 ×D4
)

∪
(

D1 ×D5
)

∪
(

D2 ×D5
)

∪
(

D2 ×D3 ×D4
)

Exercise 10.2 Two-tank system decomposition

This exercise illustrates Remark 10.5 still with the two tank system. Assume each tank is a
subsystem with the structures:

f
1
∪ g

1
= {c1, c2, c3, d4, c5, ch1}

x1 =
{

qL, qP , h1, ḣ1, q12
}

x1 = {h2}

f
2
∪ g

2
= {c6, d7, c8, cm, ch2}

x2 =
{

h2, ḣ2, q2
}

x2 = {q12} .

The global incidence matrix is decomposed as follows:

Σ1 qL qP ḣ1 h1 q12 h2

c1 1© 1

c2 1© 1

c3 1 1 1 1©

d4 1© 1

c5 1 1 1©

ch1 1©

Σ2 ḣ2 h2 q2 q12

c6 1 1 1©

d7 1© 1

c8 1 1

cm 1©

ch2 1©

and two complete matchings with respect to the unknown variables are shown by1©.
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1. How many local residuals are respectively provided byΣ1 andΣ2 and what are their
structures?

2. Can you explain why there are less local residuals than when considering the global
structure?✷

Solution

1. There is no over-constrained subsystem inΣ1 and there is only one local resid-
ual inΣ2 with the structure{ch2, cm, c8}.

2. Two of the three residuals exhibited by the global structure have disappeared.
Indeed, a closer look at the two local structures shows that in Σ1 the external
variableh2 can be computed using{c1, c2, c3, c5, ch1} while in Σ2, h2 is an
internal variable that can be computed usingch2

. Equating these two results
would give a global residual with the structure{c1, c2, c3, c5, ch1, ch2} that in-
cludes constraints from the two subsystems. This follows from the fact that in
the structural analysis of the global modelh2 is over-constrained, while it is
just-constrained in each of the two local structural analysis. Similarly,q12 can
be computed inΣ1 from {c1, c2, c3, ch1} and inΣ2 from {c6, d7, cm, ch2} so
the structure of the global residual obtained by equating these two results would
be the union of these two structures.

Exercise 10.3 Coordination of local diagnosis

Consider a system in which there are 3 different estimation versions of an unknown variable
x from the known variablesu′ ∪ y′ (remember that the notationu′, y′ meansu, y and a
number of their time derivatives):

x = f1
(

u
′
, y

′
)

using the subset of constraintsC1 = {a, b, c, d}

x = f2
(

u
′
, y

′
)

using the subset of constraintsC2 = {e, f}

x = f3
(

u
′
, y

′
)

using the subset of constraintsC3 = {b, f, g, h}.

Three residuals are obtained:

ρ1 = f1
(

u
′
, y

′
)

− f2
(

u
′
, y

′
)

ρ2 = f1
(

u
′
, y

′
)

− f3
(

u
′
, y

′
)

ρ3 = f2
(

u
′
, y

′
)

− f3
(

u
′
, y

′
)

.

1. What are the structures of the residuals?

2. What is the distinguishability table?

3. Assuming there are three subsystems that run one residualeach, what are the local diag-
nosis tables?

4. What is the coordinated diagnosis table?✷
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Solution

1. The structure of the residuals are:

C (ρ1) = {a, b, c, d, e, f}

C (ρ2) = {a, b, c, d, f, g, h}

C (ρ3) = {b, e, f, g, h}

2. The distinguishibility table is:

OK a, c, d b, f e g, h

ρ1 0 1 1 1 0

ρ2 0 1 1 0 1

ρ3 0 0 1 1 1

3. The local diagnosis tables are:

ρ1 ∆1

0 OK ∪ {g, h}

1 {a, b, c, d, e, f}

ρ2 ∆2

0 OK∪{e}

1 {a, b, c, d, f, g, h}

ρ3 ∆3

0 OK ∪ {a, c, d}

1 {b, e, f, g, h}

4. The coordinated diagnosis table is:

ρ1ρ2ρ3 ∆1 ∆2 ∆3 ∆

000 OK ∪ {g, h} OK∪ {e} OK ∪ {a, c, d} OK ∪ {g, h}

× {e} × {a, c, d}

001 OK ∪ {g, h} OK∪ {e} {b, e, f, g, h} {g, h} × {e}

010 OK ∪ {g, h} {a, b, c, d, f, g, h} OK ∪ {a, c, d} {g, h} × {a, c, d}

011 OK ∪ {g, h} {a, b, c, d, f, g, h} {b, e, f, g, h} {g, h}

100 {a, b, c, d, e, f} OK∪ {e} OK ∪ {a, c, d} Cannot happen

101 {a, b, c, d, e, f} OK∪ {e} {b, e, f, g, h} {e}

110 {a, b, c, d, e, f} {a, b, c, d, f, g, h} OK ∪ {a, c, d} {a, c, d}

111 {a, b, c, d, e, f} {a, b, c, d, f, g, h} {b, e, f, g, h} {b, f} ∪ {a, c, d}

×{e, g, h}

∪ {e} × {g, h}
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Exercises of Chapter 12

Exercise 12.2 Diagnosis of an interconnected discrete-event system

Consider the system modelled by the I/O automata network shown in Fig. S.10. The system
is designed so that the two subsystems represented by the automataA1 andA2 cannot reach
the state2 and4 simultaneously.

1 2

2,1/2,0

2,*/1,1
1,0/1,12,0/1,1

1,*/1,1

1,0/2,0 3

4

2,*/4,02,*/3,1

1,*/3,1
2,0/3,1

1,*/4,0

A1

A2

v1

v2

w1

w2

r1=s2

s1=r2

Fig. S.10. Composite system model

1. Combine the models shown in the figure to get a determinsticautomaton of the overall
system. Show that the specification mentioned above is satisfied.

2. The faultf2 appearing in the automatonA2 makes the coupling outputr2 identical to1
(r2(k) = 1) independently of the automaton state. Change the modelA2 accordingly.
What happens in the model of the overall system?

3. Use decentralised diagnosers to detect the faultf2. Is it possible to select an input se-
quence for both subsystems such that the fault is detected before the subsystems reach
simultaneously the states2 and4?

4. Consider now a sensor fault, which makes the output of the automatonA1 constant:
w1(k) = 1. Can decentralised diagnosers detect this fault? Select, if possible, distin-
guishing input sequences for both subsystems.✷

Solution

1. The overall system is described by the I/O automaton shownin Fig. S.11. The
model shows that indeed the state(2 4)T is not reachable.

2. The faulty overall system can reach the state(2 4)T as shown in Fig. S.12.
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Fig. S.11. Overall system model
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Fig. S.12. Model of the faulty overall system


