Mogens Blanke, Michel Kinnaert, Jan Lunze and Marcel Staroswiecki

### Diagnosis and Fault-Tolerant Control

### Figures

September 2015



Fig. 1.1. Fault-tolerant system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 1.2. Graphical illustration of the system behaviour

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 1.3. System subject to faults

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 1.4. Distinction between actuator faults, plant faults and sensor faults

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 1.5. Regions of required and degraded performance

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 1.6. Architecture of fault-tolerant control

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015

Page 11



## Fig. 1.7. Fault propagation in interconnected systems

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 1.8. Fault diagnosis

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 1.9. Behaviour of the faultless and the faulty system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 1.10. Diagnosis of continuous-variable systems

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015 Control of the faultless system



Control of the faulty system



## Fig. 1.11. Behaviour of the faultless and the faulty closed-loop system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 1.12. Behavioural representation of fault accommodation

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 1.13. Fault accommodation

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 1.14. Control reconfiguration

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 1.15. Decentralised diagnosis

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 1.16. Coordinated diagnosis

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 1.17. Structure of a cyberphysical system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 1.18. Remote diagnosis

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 1.19. Decomposition of the diagnostic task

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015





Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 2.2. Block diagram of the tank system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 2.3. Three-tank system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 2.4. Nominal configuration of the three-tank system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 2.5. Motion of a ship steered by its rudder

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 2.6. Cascaded architecture of controllers for ship steering

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 2.7. A simple dynamical model of a ship steered by the rudder

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 2.8. Simple heading controller (autopilot) for the ship example

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 3.1. Controlled system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



|   | u | i | R |
|---|---|---|---|
| С | 1 | 1 | 1 |

### Fig. 3.2. Structure of Ohm's law

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 3.3. Discrete-event dynamical system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 3.4. Symbolic signal values and event sequence

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 3.5. Stochastic automaton describing the tank system for faulty pump $(q_{\rm P} = 0)$

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 3.6. Hybrid dynamical system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 3.7. Block diagram of actuator with additive faults - open loop

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 3.8. Actuator with angular velocity feedback

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015


# Fig. 4.1. Automaton of a batch process illustrated through use-modes

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 4.2. Traditional failure modes and effects analysis scheme illustrated graphically for two component levels

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 4.3. Piping and instrumentation diagram representation of a temperature control loop with 3-way valve

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 4.4. Propagation of fault effects in closed-loop control of 3-way valve

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 4.5. A fault propagation graph example. One vertice is input (1), another is output (5).

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 4.6. Propagation of faults through the track error sensor and track controller

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 4.7. Operation of 3-way valve actuator with relay operated induction motor. (Abbreviations: o:open, c:close, LS:Limit switch, AC: Alternating Current)



#### Fig. 4.8. Electrical diagram of potentiometer and computer interface to enable fault detection at the single sensor level

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 4.9. Fault propagation in the ship steering problem

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 4.10. Aggregation of low-level components into high-level ones

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 4.11. Component diagram for speed loop part of the industrial actuator

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 4.12. Component diagram of battery charger

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 5.1. Bi-partite graph of the linear system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 5.2. Single-tank system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 5.3. Structure graph of the single-tank system without controller

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 5.4. Structure graph of the controlled tank

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 5.5. Digraph of the linear system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 5.6. Numerical and structural analysis of dynamical systems

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 5.7. Reduced structure graph of the tank system



#### Fig. 5.7. Structure graph used in diagnosis

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015





Fig. 5.8. Two matchings for the tank system: The edges  $e \in \mathcal{M}$  are drawn by thick lines.



# Fig. 5.9. An incomplete matching (a) and two matchings (b), (c) that are complete with respect to $\mathcal{Z}$

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 5.10. Matched (a) and a non-matched constraint (5.13) (b)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 5.11. Directed graphs corresponding to the three matchings

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 5.12. Structure graph (a), possible (b) and impossible matching (c)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 5.13. Two algebraic constraints with two unknowns



Fig. 5.14. A matching with a differential loop



Fig. 5.15. An algebraic loop (Part 1)



Fig. 5.15. An algebraic loop (Part 2)



# Fig. 5.16. Two equivalent loop-free oriented graphs

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 5.17. Example of the canonical decomposition of a bi-partite graph

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 5.18. Canonical decomposition of the structure graph

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 5.19. Incidence matrix after the detailed decomposition of the just-constrained subgraph

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 5.20. Decomposition of the just-constrained subgraph $\mathcal{G}^0$ into strongly connected components

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 5.21. Circuit of a tail lamp

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 5.22. Structure graph of the circuit (a) and DM decomposition of the reduced structure graph (b) (Part 1)


Fig. 5.22. Structure graph of the circuit (a) and DM decomposition of the reduced structure graph (b) (Part 2)



## Fig. 5.23. Scheme for determining the unknown variables of the tail lamp for given input voltage v

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 5.24. Structure graph of the two-tank system







### Fig. 5.26. Finding a new matching by using an augmenting path

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 5.27. Alternating tree with root $c_1$ (a) and with root $c_3$ (b) (Part 1)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 5.27. Alternating tree with root $c_1$ (a) and with root $c_3$ (b) (Part 2)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 5.28. Setting the maximum matching problem as a maximum flow problem.

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 5.29. Oriented structure graph for sensor monitoring

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 5.30. Ranking for the single tank system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 5.31. Graph showing the order in which the unknown variables can be determined for given $q_{\rm m}$

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 5.32. Oriented graph, in which the arrows indicate the order of matching



Fig. 5.33. Simulation results of the two-tank system



### Fig. 5.34. Structure graph for the active diagnosis example

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015





Fig. 5.35. Graph-based interpretation of the observability property



### Fig. 5.36. Position actuator open loop

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 5.37. Block diagram of DC motor with load torque and closed speed loop

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 5.38. Block diagram of single axis satellite with input from two redundant actuators, redundant measurements of attitude (angle), measurement of angular rate and measurement of delivered actuator torques

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 5.39. Specialised computation circuit

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 5.40. Schematic representation of an ABS test bed

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 6.1. Structure of a fault diagnosis system



### Fig. 6.2. Block diagram of a third-order state variable filter

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 6.3. Structure of residual generator in the parity space formulation

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 6.4. Manipulation of the block diagram to arrive at a standard problem formulation



### Fig. 6.5. Residual generator depicted in a standard setup formulation



### Fig. 6.6. If a solution exists, fault estimation is obtained by solving the standard problem



#### Fig. 6.7. System with three sensors

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 7.1. Two Gaussian probability density functions with mean  $\mu_0 = 0$  and  $\mu_1 = 2$ , and with the same variance  $\sigma^2 = 1$ 



Fig. 7.2. Realisation of a sequence of independent random variables with distributions depicted inFig. 7.1. Time on the *x*-axis is expressed in number of samples.







### Fig. 7.4. Block diagram for the CUSUM test (7.4), (7.5), (7.7)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 7.5. Gaussian probability density functions with actual (continuous line) and overestimated means (dash-dotted line)



Fig. 7.5. Evolution of the recursive CUSUM decision functions computed with the exact (continuous line) and approximated likelihood ratios (dash-dotted line) for the data sequence of Fig. 7.2



number of samples, as a function of h



Fig. 7.6. Mean time between false alarms expressed in multiples of  $10^5$  samples as a function of h



Fig. 7.7. Zoom on the decision function resulting from the recursive algorithm for the data of Fig. 7.2


Fig. 7.8. Two GLR decision functions (Part 1)



Fig. 7.8. Two GLR decision functions (Part 2)



Fig. 7.9. Realisation of the vector sequence (7.62)



### Fig. 7.10. Block diagram of the supervised system together with the innovation filter

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 7.11. Block diagram of the supervised system together with the innovation filter in the presence of unknown inputs

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 7.12. Sampled output sequence of ship model in healthy and faulty working modes; $\omega_{3m}$ as a function of sample number (continuous line), $\psi_m$ as a function of sample number (dash-dotted line)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 7.13. Innovation sequences computed by (7.117), (7.118) from the data of Fig. 7.12; first component (continuous line); second component (dash-dotted line)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 7.14. Fault detection system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015







Fig. 7.16. CUSUM decision function resulting from application to the innovation sequence ofFig. 7.13 of the CUSUM algorithm based on the known dynamical profile of change (Fig. 7.15)



### Fig. 7.17. GLR decision function resulting from application to the innovation sequence of Fig. 7.13 of the algorithm with known dynamical profile of change

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 7.18. Estimate of the change magnitude resulting from application to the innovation sequence of Fig. 7.13 of the GLR algorithm with known dynamical profile of change

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 7.19. Angular rate and heading measurements

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 7.20. Residual affected by  $f_{\omega}$ 



Fig. 7.20. Residual affected by  $f_{\psi}$ 



## Fig. 7.21. CUSUM decision function and GLR decision function resulting from evaluation of $r_{\psi}$

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015







# Fig. 8.1. The plant can change in a discrete way through change in states, a plant fault can cause a discrete event

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 8.2. Structure of logic-based switching controller

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 8.3. Logic within a supervisor selects an output estimate from a bank of estimators

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 8.4. The lattice of the actuators subsets in the example

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 8.5. The lattice of actuator configurations

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 8.6. Recoverable configurations

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 8.7. Structural graph of the measurement system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 8.8. The new system with *b* removed and *a* duplicated

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 9.1. Fault-tolerant controller



### Fig. 9.2. Idea of the model-matching approach to control reconfiguration

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 9.3. Example demonstrating the model-matching reconfiguration strategy

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 9.4. Input/output-based reconfiguration after actuator failures

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 9.5. Reconfiguration of a two-tank system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015







## Fig. 9.7. Principle of control reconfiguration for actuator or sensor failures

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 9.8. Reconfiguration problem for the tank example

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 9.9. Block diagram of the reconfiguration problem

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 9.10. Reconfiguration by using a virtual sensor

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 9.11. Analysis of the closed-loop system with virtual sensor

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015


# Fig. 9.12. Reconfiguration by means of a virtual actuator

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 9.13. Transformed closed-loop system showing the separation principle

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 9.14. Static reconfiguration of the tank system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015







### Fig. 9.16. Reconfigured system with virtual actuator

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015







#### Fig. 9.18. Plant used for control reconfiguration (LC - level control, TC - temperature control)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 9.19. Reconfigured controller including a virtual actuator

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 9.20. Results of the reconfiguration experiment (Reactor temperature  $\vartheta_{B1}(t)$  (top), reactor content  $V_{B1}(t)$  (middle) and reactor content  $V_{B5}(t)$ 



Fig. 9.21. Part of the chemical plant VERA used in the experiment



Fig. 9.22. Schematic diagram of the process



#### Fig. 9.23. Schematic diagram of the process

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 9.24. Reconfiguration by means of a virtual actuator

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 9.25. Reconfiguration in case of the valve failure



Fig. 9.26. Absolute values of the control inputs after the reconfiguration in case of the value  $V_{\text{TB}}$ -failure



Fig. 9.27. Reconfiguration after valve  $V_{\text{TB}}$ -failure







# Fig. 9.29. Nominal, PIM and NTT state trajectories

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 9.30. PIM versus NTT costs

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 9.31. Nominal, MPIM and NTT state trajectories

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 9.32. MPIM vs NTT costs

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 9.33. Trajectory tracking cost vs fault accommodation delay

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 9.34. Controller structure for the Youla-Kucera parametrisation

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 9.35. Control system in standard configuration

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 9.35. Control system in generalised setup for fault-tolerant control

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 9.36. Two-controller scheme

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 9.37. Two-controller scheme with anti-windup mechanism

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 9.38. Progressive Accommodation scheme

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 9.39. Comparison of the classical and the progressive accommodation schemes

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 9.40. Nominal, MPIM and NTT state trajectories

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 9.41. Progressive Accommodation in the nominal trajectory tracking state trajectories

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015





#### Fig. 10.1. Local controller and diagnoser

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 10.2. Distributed system architecture

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Field bus

#### Fig. 10.3. The publisher/subscriber scheme

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 10.4. Two agreement classes between 5 controllers

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 10.5. The three conflicts associated with the signature 111


### Fig. 10.6. Information patterns and diagnosis distribution in the ship example

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 10.7. Recoverability span under $\mathcal{Z}_{min}$

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 10.8. Publishable sets of data

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 10.9. Two possible decomposition hierarchies

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 10.10. Information patterns under bilateral agreements for 4 subsystems

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 10.11. $\Sigma_{\rm K}$ -recoverability of configuration 1345

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 10.12. Strong $\Sigma_{\rm K}$ -recoverability of configuration 1345

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 11.1. Diagnostic problem

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 11.2. Discrete-event system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015





Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 11.4. Asynchronous (left) and synchronous (right) input, state and output sequences

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 11.5. Automaton graph of a deterministic automaton (Part 1)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 11.5. Automaton graph of a deterministic automaton (Part 2)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.6. Part of the automaton graph of a nondeterministic automaton

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 11.7. Stochastic process

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 11.8. Autonomous stochastic automaton

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.9. Part of the automaton graph of a stochastic automaton with input and output

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015





# Fig. 11.10. Faults change the system properties (Part 1)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 11.10. Faults change the system properties (Part 2)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.11. Fault interpreted as an unobservable event (Part 1)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 11.11. Fault interpreted as an unobservable event (Part 2)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.12. Fault identification as model identification problem

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.13. Fault interpreted as an additional input

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.14. Representation of a faulty system including a fault model

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Equivalent state pairs

### Fig. 11.15. State trajectories over equivalent state pairs

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 11.16. State trajectories generated by a distinguishing input sequence $\bar{V}(0 \dots k)$ that start in a k-distinguishable, (k-1)-equivalent state pair

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 11.17. Two automata

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.18. Illustration of the detectability condition (11.60)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.19. Illustration of fault identification

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015







#### Fig. 11.20. Models of three fault cases

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 11.21. Automaton

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.22. Determination of the distinguishing input sequence of 1-distinguishing state pairs

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.23. Determination of the distinguishing input sequence of 3-distinguishing state pairs

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.24. State trajectories for determining whether the automaton is in the initial state 1 or 2

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015

$$\mathcal{N}_{0} \qquad \underbrace{\begin{array}{c} v=1, w=1 \\ w=1, \\ w=1 \\ 1 \end{array}}^{v=1, w=1, \\ w=1 \\ w=1 \\ 2 \end{array}} \underbrace{\begin{array}{c} v=1, \\ w=1, \\ w=1 \\ 3 \end{array}}^{v=1, \\ w=1 \\ 4 \end{array}} \underbrace{\begin{array}{c} v=1, \\ w=2 \\ 4 \end{array}}^{v=1, \\ w=2 \\ 4 \end{array}}$$



#### Fig. 11.25. Automaton graph of the example

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015





#### Fig. 11.26. Automaton graph of the example

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015


### Fig. 11.27. Observation result

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 11.28. Comparison of simulation and observation

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 11.29. Stochastic automaton with stochastically unobservable set $\{1, 2\}$

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.30. Automaton graph of the example

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.31. Sequences of input symbols

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.31. Sequences of output symbols

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.32. Observation result

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 11.33. Model of the faultless and the faulty system

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015





Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015





Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.36. Output sequences for v = 2, f = 1

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.36. Output sequences for v = 2, f = 2

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.36. Output sequences for v = 1, f = 1

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 11.37. Diagnostic results for the three experiments shown in Fig. 11.36 in the same order (Part 1)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



# Fig. 11.37. Diagnostic results for the three experiments shown in Fig. 11.36 in the same order (Part 2)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.37. Diagnostic results for the three experiments shown in Fig. 11.36 in the same order (Part 3)

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 11.38. Batch reactor

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 12.1. Decentralised diagnosis of interconnected discrete-event systems

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 12.2. Centralised diagnosis

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 12.3. Subsystem model

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



### Fig. 12.4. Network with two I/O-automata

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015





Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



#### Fig. 12.6. Equivalent deterministic automaton

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. 12.7. Overall system with asynchronous state transitions

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 12.8. Model of the isolated subsystems

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015





## Fig. 12.9. Sketch and subsystem models of a mountain railway

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



Fig. 12.10. Composite system model

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015



## Fig. A2.1. Coloured noise generated by a filtered white noise

Blanke/Kinnaert/Lunze/Staroswiecki: Diagnosis and Fault-Tolerant Control, (3rd edition), Springer-Verlag 2015