Jan Lunze Automatisierungstechnik

Methoden für die Überwachung und Steuerung kontinuierlicher und ereignisdiskreter Systeme

5., überarbeitete Auflage mit 413 Abbildungen, 94 Anwendungsbeispielen und 100 Übungsaufgaben

Alle Bilder

Abb. 1.1: Füllstands- und Temperaturregelung eines Reaktors

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.2: Batchprozess

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.3. Blockschaltbild des gesteuerten Batchprozesses

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.4: Steuerung und Aggregateschutz eines Batchprozesses

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.5: Raumtemperaturregelung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.6: Energieflüsse in einem Elektroenergieverteilungsnetz

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.7: Hierarchischer Aufbau der Überwachung und Steuerung des Flugverkehrs

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.9: Grundstruktur automatisierter Systeme

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.10. Zwei Arten von Rückkopplungen in automatisierten Systemen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.11: Definition der an einem Prozess wirkenden Signale

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.12: Identifikation dynamischer Systeme

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.13: Vorhersage des Systemverhaltens

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.14: Planung eines Steuereingriffs

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.15: Zustandsbeobachtung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.17: Steuerung im geschlossenen Wirkungskreis (Regelung)

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.19: Kombination beider Steuerungsarten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.20: Online-Vorhersage des Systemverhaltens

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.21. Zustandsrückführung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.22: Hierarchische Gliederung eines Automatisierungssystems

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 1.23: Schematische Darstellung der Fertigungszelle

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.1. Dynamisches System

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.2. Beispiele für einen kontinuierlichen und einen diskreten Prozess mit ähnlichen systemdynamischen Eigenschaften

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.3. Autonome Systeme

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.4. Blockschaltbild eines Systems

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.5. Grundsymbole des Blockschaltbilds

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.7. Blockschaltbild des drehzahlgeregelten Gleichstrommotors

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.8. Abfüllanlage (TC – Temperaturregler, LC – Füllstandsregler)

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.9. Blockschaltbild der Abfüllanlage

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.10: Landkarte des vom Elbehochwasser betroffenen Gebietes

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.11: Darstellung des strukturellen Zusammenhangs zwischen den Pegelständen durch ein Blockschaltbild

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.12. Antriebsstrang eines Kraftfahrzeugs

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.13: Schaltung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 63

Abb. 2.13: Signalflussgraph der Schaltung

Abb. 2.14. Dekomposition und Aggregation eines Systems

Abb. 2.15: Hierarchisch strukturiertes Blockschaltbild eines Gleichstrommotors

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.16: Beispiel für ein gekoppeltes System

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.17: Zerlegung des gekoppelten Systems aus Abb. 2.16 in stark zusammenhängende Teilsysteme

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.18. Kopplungsstruktur der Abfüllanlage

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.19. Betrachtung des Gesamtsystems vom Standpunkt des Teilsystems i aus

Abb. 2.20. Modell eines Elektroenergienetzes

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.21. Steuerung in der offenen Wirkungskette (oben) und im geschlossenen Wirkungskreis (unten)

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.22. Invertiertes Pendel

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.24: Steuerung des Pendels in der offenen Wirkungskette und im Regelkreis

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 75

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 2.28. Systemverhalten bei Zeitplansteuerung (links) und Regelung (rechts)

Abb. 2.30. Steuerung eines elastischen Roboters

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.1. Blockschaltbild eines kontinuierlichen Systems

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.3. Detailliertes Blockschaltbild des Gleichstrommotors

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.4. Signalflussgraph des Gleichstrommotors

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.5: Trajektorie des Gleichstrommotors im Zustandsraum

Abb. 3.6. Blockschaltbild der Zustandsraumbeschreibung

Abb. 3.7. Signalflussgraph eines Systems zweiter Ordnung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.8: Signalflussgraph des Gleichstrommotors

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.9. Mehrgrößensystem mit zwei Eingangsgrößen und zwei Ausgangsgrößen

Abb. 3.11: Aufbau eines Unterwasserfahrzeugs

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.12. Beschreibung des Unterwasserfahrzeugs als Punktmasse

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.13. Stationäre Lage des Unterwasserfahrzeugs

Abb. 3.14: Kräfte an einem abgebremsten Rad

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 108

Abb. 3.16. Blockschaltbild des Modells zur Beschreibung des Abbremsvorgangs eines Fahrzeugs

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.17. Aufbau eines Radioteleskops

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.19. Anwendung des linearisierten Modells

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.20. Wärmeübertrager

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.21. Parallelschaltung der Teilsysteme S_1 und S_2

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 3.22. Reihenschaltung der Teilsysteme S_1 und S_2

Abb. 3.24. Blockschaltbild eines Regelkreises

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 4.1. Vorhersageaufgabe

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 4.2. Zerlegung der Bewegung in die Eigenbewegung und die erzwungene Bewegung

Abb. 4.3. Zerlegung des Systemverhaltens in die Anteile, die durch den Anfangszustand, die Stellgröße und die Störgröße hervorgerufen werden

Seite 129

Fahrzeugs in der Ebene

Abb. 4.6: Geschwindigkeit des Fahrzeugs mit unterschiedlicher Anfangsgeschwindigkeit und konstanter Eingangsgröße

Abb. 4.8. Berechnung der Zustandstrajektorie für zwei unterschiedliche Zeitachsen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 4.9. Darstellung des E/A-Verhaltens mit unterschiedlichen Zeitachsen

Abb. 4.10: Berechnung der Fahrzeugbewegung mit Hilfe des Zustands zum Zeitpunkt $t_0=20$

Abb. 4.11: Darstellung der Eigenwerte in der komplexen Ebene

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 4.12: RC-Glied

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 4.13: Geheizter Rührkesselreaktor

Abb. 4.14. System mit sprungförmiger Eingangsgröße

Abb. 4.15: Übergangsfunktion eines Systems zweiter Ordnung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 4.16: Übergangsfunktionen unterschiedlicher Systeme

Abb. 4.17. Eulerintegration einer nichtlinearen Differentialgleichung erster Ordnung

Abb. 4.18. Simulink-Blockschaltbild des Modells für den Abbremsvorgang eines Fahrzeugs

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 4.19: Schlupf, Kräftschlussbeansprüchung und Winkelgeschwindigkeit beim Abbremsen auf trockenem (—) und nassem (- - -) Asphalt

Abb. 4.20: Schlupf, Kraftschlussbeanspruchung und Winkelgeschwindigkeit beim Abbremsen auf vereister Straße mit blockierenden Rädern

Seite 150

Abb. 4.22. Übergangsfunktion eines Systems erster Ordnung

Abb. 4.23: Experimentell bestimmte Übergangsfunktion eines Wärmeübertragers

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 5.1: Bezug der Steuerbarkeit und Beobachtbarkeit zu den Systemgleichungen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 5.2: Erwärmung eines Werkstücks in einem Industrieofen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 5.3: Modellansatz zur Beschreibung des Industrieofens

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 161

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 5.5: Zustände, in denen der Ofen verharren kann

Abb. 5.8: Eigenbewegung des Industrieofens

Seite 167

Abb. 5.9. Signalflussgraph des Industrieofens

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 5.10. Strukturgraph des Industrieofens

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 5.11: RC-Schaltung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 174

Abb. 5.12: Strukturelle Zerlegung eines Systems

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 5.13: Satellit über der Beobachtungsstation

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 6.1: Verschiebung des Arbeitspunkts in den Nullpunkt des Zustandsraumes

Abb. 6.2: Trajektorie eines asymptotisch stabilen Systems

Abb. 6.3. Pendel mit zwei Ruhelagen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 6.4. Pendel mit dem für die Modellbildung wichtigen Kräftedreieck

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 6.6. Veranschaulichung der Stabilitätsprüfung unter Verwendung einer Ljapunowfunktion

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 6.7: Pendel mit den für die Bestimmung der potentiellen Energie maßgebenden Größen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 199

 $\dot{\phi}$ in rad/s

Abb. 6.9: Darstellung der Zustandstrajektorie des Pendels auf der durch die Ljapunowfunktion aufgespannten Oberfläche

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 6.11. Informationsrückkopplung im Regelkreis

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 6.12. Stabilisierung des invertierten Pendels durch eine Rückführung des Pendelwinkels ϕ

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 6.13. Antiblockiersystem als Regler in einem Schlupfregelkreis

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 7.1. Standardregelkreis

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 7.2: Führungsübergangsfunktion des Regelkreises mit Kennzeichnung wichtiger Kennwerte

Abb. 7.3: Vergleich von Störübergangsfunktion und Führungsübergangsfunktion

Abb. 7.4. Standardregelkreis

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 214

Abb. 7.5. Standardregelkreis mit an den Ausgang transformierter Störung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 7.6. Statisches Verhalten des ungestörten Regelkreises

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 7.7. Statischer Endwert $\omega(\infty)$ der Drehzahl beim Sollwert $\omega_{Soll} = 1$ für den proportional geregelten Gleichstrommotor mit dem Reglerparameter k_{P}

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 7.8: Dynamisches Verhalten des Drehzahlregelkreises

Abb. 7.9. Erweiterter Standardregelkreis mit Vorfilter

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 7.10. Statisches Verhalten von Regelkreisen mit I-Regler für $\bar{w} = 1$

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 7.13. Regelkreis mit den unvollständig bekannten Komponenten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 7.14. Wirkung von Wind und Anstieg der Fahrbahn auf die Längsbewegung von Fahrzeugen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 7.16. Standardregelkreis mit zusätzlichen Komponenten

Abb. 7.17. Erweiterung des ABS-Reglers um eine Komponente für die Sollwertberechnung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 7.18. Zweite Erweitung des ABS-Reglers

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 7.19. Ermittlung des Sollwertes für den Schlupf: (a) bei ausreichendem Haftbeiwert, (b) durch Verkleinerung des Sollwertes für die Kraftschlussbeanspruchung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 8.1. Regelkreis mit PID-Regler

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 8.2. Übergangsfunktion der Regelstrecke

Abb. 8.3. Regelkreis mit schwingender Regelgröße

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 8.4. Temperaturregelung eines kontinuierlich durchströmten Rührkesselreaktors mit einer Heizung in der Reaktorwand

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 8.5. Übergangsfunktion des Rührkesselreaktors

Abb. 8.7. Störübergangsfunktion des Temperaturregelkreises mit PID-Regler im Vergleich zum Verhalten der Regelstrecke

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

unterschiedlichen Reglerverstärkungen $k_{\rm P}$

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 248

Temperaturregelkreises mit der zweiten Reglereinstellung

Abb. 8.12: Prinzip der Reglereinstellung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 8.13: Führungsübergangsfunktionen für den I-Regelkreis

Abb. 8.13: Lage der zwei größten Eigenwerte des I-Regelkreises bei unterschiedlicher Reglerverstärkung

Abb. 8.14: Führungsübergangsfunktionen des Temperaturregelkreises mit $k_{\rm I} = 0.5$ und verändertem P-Anteil

Abb. 8.14: Führungsübergangsfunktionen des Temperaturregelkreises für den Einstellfaktor $a \in \{0,4, 0,6, 1, 2\}$

Abb. 8.15. Stellgrößenverlauf beim I-Regler mit kleiner Reglerverstärkung $k_{\rm I}$ und w = 1

Abb. 9.1: Idee des Zustandsbeobachters

Abb. 9.2: Parallelschaltung von System und Modell

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 9.3: Kopplung von System und Luenbergerbeobachter

Ofentemperaturen bei zwei unterschiedlichen Anfangszuständen des Beobachters: $x_0 = (y(0), y(0))^T$

Abb. 9.6: Behältersystem, für das ein Beobachter entworfen werden soll

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 9.7: Impulsförmige Störung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 9.8. Störungen bei der Beobachtung des Industrieofens

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 276

Abb. 9.12: Beobachter für das Teilsystem 2

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 9.14: Realisierung einer Regelung mit Hilfe eines Beobachters für die nicht messbare Regelgröße y

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.1. Klassifikation interner Fehler

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.2: Signalbasierte Diagnose

Abb. 10.3. Fehlerfreies und fehlerhaftes System

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.4: Dekomposition eines fehlerhaften Systems

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.5. RC-Glied mit fehlerhaft angeschlossenem Kondensator

Abb. 10.6. Prozessdiagnose kontinuierlicher Systeme

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.7: Fehlererkennung mit Hilfe eines Beobachters

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.10. Verlauf des Beobachtungsfehlers

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Störung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Störung durch Straßenunebenheiten

Abb. 10.13: Sicherheitsüberwachung des Fensterhebers

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.14: Reaktor mit Füllstandsregelung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.15. Sensorüberwachung mit dedizierten Beobachtern

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.16: Aufbau eines Bioreaktors

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.19. Überwachung des pH-Sensors

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.20: Einschwingverhalten des dedizierten Beobachters bei fehlerfreien Sensoren

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 311

Abb. 10.22. Intelligenter pH-Sensor

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.23. Sensorüberwachung mit einer verallgemeinerten Beobachterbank

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.24: Fehleridentifikation mit einer Beobachterbank

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.25: Erweitertes Prozessmodell

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.27. Blockschaltbild des Füllstandsregelkreises

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.28: Verhalten des Füllstandsregelkreises mit fehlerfreiem Stellgerät (- - -) und nach Auftreten eines Lecks im Ventilgehäuse (Fehler f_1 —)

Abb. 10.29: Aufbau eines Servoventils

Abb. 10.30. Regelkreis des Servoventils

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.31. Stellgerät mit Fehlermodell

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 10.33: Blockschaltbild für die Diagnose des Servoventils mit Kennzeichnung des für die Diagnose verwendeten Modells

zum Zeitpunkt t = 0 und Diagnosebeginn zur Zeit $t_0 = 20$

Abb. 10.37. Fehlertolerante Steuerung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.1. Ereignisdiskretes System

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.2: Symbolische Signalwerte und Ereignisfolgen

Abb. 11.3: Wertefolge und Ereignisse bei einer Reaktorsteuerung

Abb. 11.4: Ereignisdiskretes System mit mehreren Eingangs- und Ausgangsgrößen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.6: Automatengraph eines autonomen deterministischen Automaten

Abb. 11.7. Getakteter Automat

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.8: Automatengraph der Stanze

$$\underbrace{V=(v(0),v(1),v(2),\ldots)}_{\text{Automat}} \quad \underbrace{E/A-}_{\text{Automat}} \quad \underbrace{W=(w(0),w(1),w(2),\ldots)}_{\text{F}}$$

Abb. 11.9. Automat mit Eingang und Ausgang

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.10. Kante im Automatengraphen zur Kennzeichnung des Zustandsübergangs von z nach z' unter der Wirkung der Eingabe v, wobei die Ausgabe w erzeugt wird

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.11: Automatengraph eines deterministischen Automaten mit Eingang und Ausgang

Abb. 11.12: Automatengraph eines nichtdeterministischen Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.13: Automatengraph des erweiterten Modells der Stanze

Abb. 11.14. Baum der Zustandsfolgen des nichtdeterministischen Automaten

Abb. 11.15: Automatengraph mit Schlingen an den Zuständen 8 und 9

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.16. Baum der Zustandsfolgen des nichtdeterministischen Automaten nach der Erweiterung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.17. Materialfluss zwischen vier Werkzeugmaschinen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.18. Beschreibung der Arbeitsweise der vier Werkzeugmaschinen durch einen nichtdeterministischen Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.19: Nichtdeterministischer Automat mit Eingang und Ausgang

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.20. Beschreibung eines Regensensors durch einen nichtdeterministischen Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.21. Ausschnitte aus zwei Automatengraphen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.22. Stochastischer Prozess

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.23: Automatengraph eines autonomen stochastischen Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.24. Stochastischer Automat, der das Würfelspiel beschreibt

Abb. 11.26. Fehlerwahrscheinlichkeit der Stanze

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.27. Teil des Automatengraphen eines stochastischen Automaten mit Eingängen und Ausgängen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.28: Stochastischer Automat

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.29: Elemente eines Petrinetzes

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.30. Petrinetz mit zwei parallelen Prozessen

Abb. 11.31. Schlinge, die durch Einführung einer zusätzlichen Stelle und einer Transition ersetzt werden kann

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.33: Prozessorientierte Modellbildung mit Petrinetzen

Abb. 11.34: Darstellung von Konflikt und Synchronisation in einem Petrinetz

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.35. Petrinetz mit Konflikt an der Stelle p_2 , der zur Blockierung führt

Abb. 11.36. Petrinetz zur Beschreibung der Arbeitsweise von vier Maschinen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.37. Beispiel für einen Synchronisationsgraphen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.38: Petrinetz, das zum Automaten in Abb. 11.6 äquivalent ist

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.39: Zustandsmaschine mit nichtdeterministischem Verhalten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.41: Elemente eines steuerungstechnisch interpretierten Petrinetzes

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.42. Petrinetz zur Beschreibung der Werkzeugmaschinen als Steuerstrecke

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.43. Streckenabschnitt einer Eisenbahnverbindung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.44. Automat mit demselben Verhalten wie das Petrinetz aus Abb. 11.30

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.45: Aufbau der Screening-Anlage

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.46. Synchronisation zweier Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.48: Vereinfachte Darstellung der synchronisierten Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.49. Kommunikation zweier Rechner über einen Übertragungskanal

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.50. Beschreibung der ungesteuerten Rechnerkommunikation durch Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.51: Reihenschaltung zweier Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.52. Reihenschaltung von drei Werkzeugmaschinen

Abb. 11.53. Modell der einzelnen Werkzeugmaschine

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.54: Modell der Reihenschaltung der Maschinen M_1 und M_2

Abb. 11.55: Modell der Reihenschaltung der Maschinen M_1 , M_2 und M_3

Abb. 11.56. Reihenschaltung von drei Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 416

Abb. 11.57. Automat mit Rückführung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.58. Rolltreppensteuerung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.59: Komposition der Rolltreppensteuerung aus dem Steuerungsalgorithmus und der Uhr

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.60: Rückführautomat, der die Rolltreppensteuerung beschreibt

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.61: Zwei Automaten in Rückführschaltung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.62. Zwei rückgekoppelte Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.64: Hydraulischer Schaltplan eines Antiblockiersystems

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 11.65. Vorratsbehälter mit diskreten Eingangsgrößen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 12.1: Zerlegung der Zustandsmenge in Teilmengen stark zusammenhängender Zustände

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 12.2: Automat mit periodischer Zustandsmenge

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 12.2: Automat mit absorbierendem Zustand

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 12.3: Grafische Darstellung des Verhaltens eines nichtdeterministischen Automaten

Abb. 12.4: Irreduzibler Automat

Abb. 12.6: Automatengraph für den Batchprozess aus Abb. 12.5

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 12.7: Reduzierter Automat für blockiertes Ventil 1

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 12.8. Vereinfachtes Modell der Stanze

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 12.9. Erreichbarkeitsgraph des Petrinetzes

Abb. 12.10: Batchprozess

Abb. 12.10: Petrinetz zur Beschreibung des gesteuerten Batchprozesses

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 13.1: Diskreter Regelkreis

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 13.3. Beispiel für eine Ablaufsteuerung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 13.4: Ablaufsteuerung Σ_R des Getränkeautomaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

{Uhr an, Uhr zurücksetzen}

Abb. 13.5. Uhr als ereignisdiskretes System

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 13.6: Blockschaltbild der geregelten Rolltreppe

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 13.7: Erweiterte Steuerstrecke, die aus der Rolltreppe und einer Uhr besteht

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 13.8: Automat, der den Regler Σ_R für die Rolltreppe beschreibt

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 13.9: Blockschaltbild mit Kennzeichnung des strukturellen Aufbaus des Reglers

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 13.10. Technische Realisierung einer Bremsampel

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 13.11: Behältersystem mit Füllstandssensoren

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 13.12: Struktur einer speicherprogrammierbaren Steuerung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 14.1: Blockschaltbild des gesteuerten Personenaufzugs

Abb. 14.2. Automat zur Beschreibung der möglichen Bewegungen des Personenaufzugs

Abb. 14.3: Reduzierter Automat zur Beschreibung der erlaubten Bewegungen des Personenaufzugs

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 14.4: Sicherheitsschleuse

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 14.5. Steuerung einer Sicherheitsschleuse: Modell der Strecke (links) und gesteuerte Tür (rechts)

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 14.6. Steuerungsstruktur für die Sicherheitsschleuse

Abb. 14.7: Steuerung der Sicherheitsschleuse in der offenen Wirkungskette

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 14.8: Steuerung der Sicherheitsschleuse im geschlossenen Kreis

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 14.9. Schiffsschleuse

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 14.10: Verifikation diskreter Steuerungen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 14.11. Steuerung des Materialflusses zwischen vier Werkzeugmaschinen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 14.12. Steuerung der Maschinen unter Nutzung des Petrinetzes

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 15.1: Automatengraph für das Beispiel

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 15.2: Automatengraph mit Kennzeichnung der Zustandsmenge $\mathcal{Z}(1 \mid 0)$

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 15.3. Ergebnis der Zustandsbeobachtung für das E/A-Paar (15.5)

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 15.4: Nichtdeterministischer Automat, der die Fertigungszelle beschreibt

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 15.5: Darstellung des Beobachtungsalgorithmus für den Automaten nach Abb. 15.1 als deterministischer Automat

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 15.6. Beschreibung der Arbeitsweise der vier gesteuerten Werkzeugmaschinen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 15.7. Ergebnis der Konsistenzprüfung für das E/A-Paar (15.10)

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 15.8. Interpretation der Gl. (15.14)

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 15.10. Ergebnis der Zustandsbeobachtung für den stochastischen Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 16.1. Nichtdeterministischer Automat unter der Wirkung des Fehlers f

Abb. 16.2: Nichtdeterministischer Automat mit Fehlermodell

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 16.3: Automatengraph für den fehlerfreien Zustand

Abb. 16.3: Automatengraph für den Fehlerfall f = 1

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 16.4: Teile des Automatengraphen, die für die Lösung der Diagnoseaufgabe wesentlich sind

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 16.6. Zwei gekoppelte Reaktoren

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 16.7: Automatengraph der fehlerfreien Reaktoren

Abb. 16.7: Automatengraph der Reaktoren mit blockiertem Verbindungsrohr

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 16.8. Bayesnetz für zwei Fehler und zwei Symptome

Abb. 16.9. Beschreibung des fehlerfreien und des fehlerbehafteten Systems

Abb. 16.11: Diagnoseergebnis für die Ausgabefolge (16.22)

Abb. 16.11: Diagnoseergebnis für die Ausgabefolge (16.23)

Abb. 16.12. Blockschaltbild einer Motorsteuerung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 16.13: Batchreaktor

Abb. 17.1: Diskrete und kontinuierliche Steuerungen für die U-Bahn in Lille

Abb. 17.2: Hybrides dynamisches System

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. 17.3. Ausschnitt aus dem Automatengraphen eines hybriden Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.1: Funktionsablauf verschiedener Geräte des täglichen Lebens

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.2: Automatisierungsebenen beim Autofahren

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.3. Blockschaltbild des Antriebsstrangs

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.4. Blockschaltbild mit Automatikgetriebe

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.5. Blockschaltbild mit Geschwindigkeitsregler

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.6. Blockschaltbild einer Motorsteuerung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.7. Kopplungsstruktur der erweiterten Abfüllanlage

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.8. Elektroenergiesystem mit drei Teilnetzen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.10. Blockschaltbild der Raumtemperaturregelung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.12. Erweitertes Blockschaltbild der Raumtemperaturregelung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.13. Elektrische Schaltung mit den im Modell verwendeten Spannungen und Strömen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.14. Signalflussgraph der elektrischen Schaltung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.15. Kräfte am invertierten Pendel

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.16: Komponenten des Behältersystems mit den verwendeten Bezeichnungen

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.17. Vereinfachtes Blockschaltbild, das den Zusammenhang der Sollbeschleunigung u(t), der Istbeschleunigung $a_{Ist}(t)$ und der Ausgangsgröße y(t) darstellt

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.18: Arbeitspunkte auf der $\mu(\lambda)$ -Kennlinie

Abb. A.19. Blockschaltbild des linearisierten Modells

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.20. Verlauf der Eingangsgröße

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.24: Strukturgraph der RC-Schaltung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.25. Veränderte RC-Schaltung

Abb. A.26: Strukturgraph der veränderten RC-Schaltung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.27: Strukturgraph zweier parallel geschalteter Integratoren

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.28: Strukturgraph des Modells zur Beschreibung des Abbremsvorgangs

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.29: Strukturgraph für den Arbeitspunkt im Maximum der $\mu(\lambda)\text{-}\mathbf{Kennlinie}$

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.30: Regelkreis

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.30: Regelkreis mit Messglied

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.31. Gleichstrommotor mit zusätzlichem Störmoment $M_{d}(t)$

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.32. Gleichstrommotor mit zusätzlichem geschwindigkeitsproportionalem Bremsmoment $M_{\rm Br}(t)$

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.33: Bestimmung der Parameter der Regelstrecke

Abb. A.34: Vergleich der im Experiment gemessenen und der mit dem Modell berechneten Ausgangsgröße

Abb. A.35: Führungsübergangsfunktionen des Regelkreises (zweite Reglereinstellung)

Abb. A.36. Blockschaltbild des Regelkreises

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.37: Diagnose des Behältersystems

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.38: Veränderte Kopplung von Reaktor und Diagnosesystem

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.39. Überwachung zweier Sensoren

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.40: Strukturgraph des Stellgerätes für die strukturelle Beobachtbarkeitsanalyse

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.41: Automatengraph des Getränkeautomaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.42. Darstellung eines Modulo-4-Zählers als Automatengraph

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.43: Automatengraph des Fahrverhaltens abhängig von der Straßenlage

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.44. Automatengraph eines Bestellvorgangs

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.45: Modell der Fertigungszelle

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.46. Beschreibung eines Regensensors durch einen nichtdeterministischen Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.47: Petrinetz zur Beschreibung des Batchprozesses

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.48. Beschreibung des Fotografierens mit einer Digitalkamera

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.49: Blockschaltbild einer Digitalkamera

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.50: Petrinetz, das den Eisenbahnverkehr auf dem in Abb. 11.43 gezeigten Streckenabschnitt beschreibt

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.51: Synchronisation der Automaten für die Rolltreppe und die Uhr

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.52. Rückführautomat, der den rückgekoppelten Automaten aus Abb. 11.62 (a) beschreibt

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.53. Beschreibung des Personenaufzugs durch zwei getrennte Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.55. Petrinetz zur Beschreibung des Personenaufzugs

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.56. Beschreibung des Vorratsbehälters durch deterministischen Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.56. Beschreibung des geregelten Vorratsbehälters durch deterministischen Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.57: Regelkreis

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.58. Zustandsübergang des Regensensors für $k = 0 \rightarrow k = 1$ bei $z_0 = 1$

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.59. Zustandsübergang des Regensensors für $k = 0 \rightarrow k = 1$ für die zweite Anfangszustandswahrscheinlichkeitsverteilung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.60: Automatengraph der Steuerungen der Treppenhausbeleuchtung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.60: Automatengraph der Steuerungen der Treppenhausbeleuchtung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.61: Blockschaltbild der gesteuerten Bremsampel

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.62: Beschreibung der gesteuerten Ampel durch einen Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.63: Erweiterung der Beschreibung der Ampelsteuerung

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.64: Blockschaltbild des gesteuerten Batchprozesses

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.65: Automatengraph der Steuerung des Batchprozesses

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.67: Petrinetz des gesteuerten Personenaufzugs

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.68. Modell der ungesteuerten Schiffsschleuse

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.69. Modell der gesteuerten Schiffsschleuse

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.70. Ergebnisse der Zustandsbeobachtung für das E/A-Paar (15.6)

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.71. Automatengraph der Fertigungszelle mit Kennzeichnung der Ausgaben

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.72: Reduzierter Automat der Fertigungszelle

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.73: Beobachtungsergebnis der Fertigungszelle

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.74. Teile der Automatengraphen, die für die Lösung der Diagnoseaufgabe wesentlich sind

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Abb. A.75: Beschreibung des Batchreaktors durch einen deterministischen Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 664

Abb. A.76: Erweiterung des Modells zum stochastischen Automaten

J. Lunze: Automatisierungstechnik, De Gruyter Oldenbourg 2020

Seite 664